We examine the thermal conductivity and bulk viscosity of a one-dimensional
(1D) chain of particles with cubic-plus-quartic interparticle potentials and no
on-site potentials. This system is equivalent to the FPU-alpha beta system in a
subset of its parameter space. We identify three distinct frequency regimes
which we call the hydrodynamic regime, the perturbative regime and the
collisionless regime. In the lowest frequency regime (the hydrodynamic regime)
heat is transported ballistically by long wavelength sound modes. The model
that we use to describe this behaviour predicts that as the frequency goes to
zero the frequency dependent bulk viscosity and the frequency dependent thermal
conductivity should diverge with the same power law dependence on frequency.
Thus, we can define the bulk Prandtl number as the ratio of the bulk viscosity
to the thermal conductivity (with suitable prefactors to render it
dimensionless). This dimensionless ratio should approach a constant value as
frequency goes to zero. We use mode-coupling theory to predict the zero
frequency limit. Values of the bulk Prandtl number from simulations are in
agreement with these predictions over a wide range of system parameters. In the
middle frequency regime, which we call the perturbative regime, heat is
transported by sound modes which are damped by four-phonon processes. We call
the highest frequency regime the collisionless regime since at these
frequencies the observing times are much shorter than the characteristic
relaxation times of phonons. The perturbative and collisionless regimes are
discussed in detail in the appendices.Comment: Latex with references in .bib file. 36 pages, 8 figures. Submitted to
J. Stat. Phys. on Sept. 2