1,019 research outputs found

    A New Method for Finding Vacua in String Phenomenology

    Get PDF
    One of the central problems of string-phenomenology is to find stable vacua in the four dimensional effective theories which result from compactification. We present an algorithmic method to find all of the vacua of any given string-phenomenological system in a huge class. In particular, this paper reviews and then extends hep-th/0606122 to include various non-perturbative effects. These include gaugino condensation and instantonic contributions to the superpotential.Comment: 27 pages, 5 .eps figures. V2: Minor corrections, reference adde

    Transport Measurements on Nano-engineered Two Dimensional Superconducting Wire Networks

    Full text link
    Superconducting triangular Nb wire networks with high normal-state resistance are fabricated by using a negative tone hydrogen silsesquioxane (HSQ) resist. Robust magnetoresistance oscillations are observed up to high magnetic fields and maintained at low temperatures, due to the eective reduction of wire dimensions. Well-defined dips appear at integral and rational values (1/2, 1/3, 1/4) of the reduced flux f = Phi/Phi_0, which is the first observation in the triangular wire networks. These results are well consistent with theoretical calculations for the reduced critical temperature as a function of f.Comment: 4 pages, 3 figure

    Unambiguous discrimination between two unknown qudit states

    Full text link
    We consider the unambiguous discrimination between two unknown qudit states in nn-dimensional (n2n\geqslant2) Hilbert space. By equivalence of unknown pure states to known mixed states and with the Jordan-basis method, we demonstrate that the optimal success probability of the discrimination between two unknown states is independent of the dimension nn. We also give a scheme for a physical implementation of the programmable state discriminator that unambiguously discriminate between two unknown states with optimal probability of success.Comment: 8 pages, 3 figure

    A Note on Energy-Momentum Conservation in Palatini Formulation of L(R) Gravity

    Full text link
    By establishing that Palatini formulation of L(R)L(R) gravity is equivalent to ω=3/2\omega=-3/2 Brans-Dicke theory, we show that energy-momentum tensor is covariantly conserved in this type of modified gravity theory.Comment: 7 page

    Absence of First-order Transition and Tri-critical Point in the Dynamic Phase Diagram of a Spatially Extended Bistable System in an Oscillating Field

    Full text link
    It has been well established that spatially extended, bistable systems that are driven by an oscillating field exhibit a nonequilibrium dynamic phase transition (DPT). The DPT occurs when the field frequency is on the order of the inverse of an intrinsic lifetime associated with the transitions between the two stable states in a static field of the same magnitude as the amplitude of the oscillating field. The DPT is continuous and belongs to the same universality class as the equilibrium phase transition of the Ising model in zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed that the DPT becomes discontinuous at temperatures below a tricritical point [M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on observations in dynamic Monte Carlo simulations of a multipeaked probability density for the dynamic order parameter and negative values of the fourth-order cumulant ratio. Both phenomena can be characteristic of discontinuous phase transitions. Here we use classical nucleation theory for the decay of metastable phases, together with data from large-scale dynamic Monte Carlo simulations of a two-dimensional kinetic Ising ferromagnet, to show that these observations in this case are merely finite-size effects. For sufficiently small systems and low temperatures, the continuous DPT is replaced, not by a discontinuous phase transition, but by a crossover to stochastic resonance. In the infinite-system limit the stochastic-resonance regime vanishes, and the continuous DPT should persist for all nonzero temperatures

    Experiments of Interfacial Roughening in Hele-Shaw Flows with Weak Quenched Disorder

    Get PDF
    We have studied the kinetic roughening of an oil--air interface in a forced imbibition experiment in a horizontal Hele--Shaw cell with quenched disorder. Different disorder configurations, characterized by their persistence length in the direction of growth, have been explored by varying the average interface velocity v and the gap spacing b. Through the analysis of the rms width as a function of time, we have measured a growth exponent beta ~= 0.5 that is almost independent of the experimental parameters. The analysis of the roughness exponent alpha through the power spectrum have shown different behaviors at short (alpha_1) and long (alpha_2) length scales, separated by a crossover wavenumber q_c. The values of the measured roughness exponents depend on experimental parameters, but at large velocities we obtain alpha_1 ~= 1.3 independently of the disorder configuration. The dependence of the crossover wavenumber with the experimental parameters has also been investigated, measuring q_c ~ v^{0.47} for the shortest persistence length, in agreement with theoretical predictions.Comment: 20 pages, 22 figure

    Simulations of the Static Friction Due to Adsorbed Molecules

    Full text link
    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The observed trends in friction can be understood in terms of a simple hard sphere model.Comment: 13 pages, 13 figure

    Finding Nested Common Intervals Efficiently

    Get PDF
    International audienceIn this paper, we study the problem of effi ciently fi nding gene clusters formalized by nested common intervals between two genomes represented either as permutations or as sequences. Considering permutations, we give several algorithms whose running time depends on the size of the actual output rather than the output in the worst case. Indeed, we first provide a straightforward O(n^3) time algorithm for finding all nested common intervals. We reduce this complexity by providing an O(n^2) time algorithm computing an irredundant output. Finally, we show, by providing a third algorithm, that fi nding only the maximal nested common intervals can be done in linear time. Considering sequences, we provide solutions (modi cations of previously de ned algorithms and a new algorithm) for di fferent variants of the problem, depending on the treatment one wants to apply to duplicated genes

    Probing Topcolor-Assisted Technicolor from Top-Charm Associated Production at LHC

    Get PDF
    We propose to probe the topcolor-assisted technicolor (TC2) model from the top-charm associated productions at the LHC, which are highly suppressed in the Standard Model. Due to the flavor-changing couplings of the top quark with the scalars (top-pions and top-Higgs) in TC2 model, the top-charm associated productions can occur via both the s-channel and t-channel parton processes by exchanging a scalar field at the LHC. We examined these processes through Monte Carlo simulation and found that they can reach the observable level at the LHC in quite a large part of the parameter space of the TC2 model.Comment: Version to appear in PRD (Rapid Communication

    The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array

    Get PDF
    We have already reported the first result on the all-particle spectrum around the knee region based on data from 2000 November to 2001 October observed by the Tibet-III air-shower array. In this paper, we present an updated result using data set collected in the period from 2000 November through 2004 October in a wide range over 3 decades between 101410^{14} eV and 101710^{17} eV, in which the position of the knee is clearly seen at around 4 PeV. The spectral index is -2.68 ±\pm 0.02(stat.) below 1PeV, while it is -3.12 ±\pm 0.01(stat.) above 4 PeV in the case of QGSJET+HD model, and various systematic errors are under study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
    corecore