1,022 research outputs found

    Branched Polymers on the Given-Mandelbrot family of fractals

    Get PDF
    We study the average number A_n per site of the number of different configurations of a branched polymer of n bonds on the Given-Mandelbrot family of fractals using exact real-space renormalization. Different members of the family are characterized by an integer parameter b, b > 1. The fractal dimension varies from log23 log_{_2} 3 to 2 as b is varied from 2 to infinity. We find that for all b > 2, A_n varies as λnexp(bnψ) \lambda^n exp(b n ^{\psi}), where λ\lambda and bb are some constants, and 0<ψ<1 0 < \psi <1. We determine the exponent ψ\psi, and the size exponent ν\nu (average diameter of polymer varies as nνn^\nu), exactly for all b > 2. This generalizes the earlier results of Knezevic and Vannimenus for b = 3 [Phys. Rev {\bf B 35} (1987) 4988].Comment: 24 pages, 8 figure

    A Model for Quantum Stochastic Absorption in Absorbing Disordered Media

    Full text link
    Wave propagation in coherently absorbing disordered media is generally modeled by adding a complex part to the real part of the potential. In such a case, it is already understood that the complex potential plays a duel role; it acts as an absorber as well as a reflector due to the mismatch of the phase of the real and complex parts of the potential. Although this model gives expected results for weakly absorbing disordered media, it gives unphysical results for the strong absorption regime where it causes the system to behave like a perfect reflector. To overcome this issue, we develop a model here using stochastic absorption for the modeling of absorption by "fake", or "side", channels obviating the need for a complex potential. This model of stochastic absorption eliminates the reflection that is coupled with the absorption in the complex potential model and absorption is proportional to the magnitude of the absorbing parameter. Solving the statistics of the reflection coefficient and its phase for both the models, we argue that stochastic absorption is a potentially better way of modeling absorbing disordered media.Comment: 5 pages, 4 figure

    Hofstadter butterflies of bilayer graphene

    Get PDF
    We calculate the electronic spectrum of bilayer graphene in perpendicular magnetic fields nonperturbatively. To accommodate arbitrary displacements between the two layers, we apply a periodic gauge based on singular flux vortices of phase 2π2\pi. The resulting Hofstadter-like butterfly plots show a reduced symmetry, depending on the relative position of the two layers against each other. The split of the zero-energy relativistic Landau level differs by one order of magnitude between Bernal and non-Bernal stacking.Comment: updated to refereed and edited versio

    Synthesis of phased cylindrical ARC antennas arrays

    No full text
    5 p.International audienceThis paper describes a new approach to synthesize cylindrical antenna arrays controlled by the phase excitation, to synthesize directive lobe and multilobe patterns with steered zero. The proposed method is based on iterative minimization of a function that incorporates constraints imposed in each direction. An 8-element cylindrical antenna has been simulated and tested for various types of beam configurations

    Electric Machines: Tool in MATLAB

    Get PDF
    This chapter presents an educational modeling and parametric study of specific types of transformers, generators, and motors used in power system. Equivalent circuit models are presented and basic equations are developed. Through tests and operating conditions, essential parameters for each presented machine are extracted. Graphical user interface (GUI) on MATLAB software is used to study and analyze each element. GUI allows better comprehension and clearer vision to analyze the performance of each electric machine, thus, a complementary educational tool. In addition, GUI permits optimal collaborative learning situations when linked with the theoretical expansion and, thus, is a teaching process that forges the connection between traditional subjects and science education

    BIOSORPTION OF METHYLENE BLUE FROM WASTE WATER USING LEBANESE CYMBOPOGON CITRATUS (CITRONNELLE)

    Get PDF
    The objective of this study was to investigate the possibility of using Lebanese Cymbopogon citratus stem as an alternative adsorbent for the removal of methylene blue from aqueous solutions. Different parameters such as the effect of initial concentration, pH, adsorbent dose, contact time and temperature were studied. Maximum adsorption capacity (61%) of MB was obtained at PH=6 an initial concentration 200 mg/L after 24h and at 25 ˚C. The adsorption isotherm was better described by a Freundlich model rather than a Langmiur model. Based on these results, it can be concluded that the stems of Cymbopogon citratus is effective as an alternative adsorbent for MB remediation in waste water

    Random-phase reservoir and a quantum resistor: The Lloyd model

    Get PDF
    We introduce phase disorder in a 1D quantum resistor through the formal device of `fake channels' distributed uniformly over its length such that the out-coupled wave amplitude is re-injected back into the system, but with a phase which is random. The associated scattering problem is treated via invariant imbedding in the continuum limit, and the resulting transport equation is found to correspond exactly to the Lloyd model. The latter has been a subject of much interest in recent years. This conversion of the random phase into the random Cauchy potential is a notable feature of our work. It is further argued that our phase-randomizing reservoir, as distinct from the well known phase-breaking reservoirs, induces no decoherence, but essentially destroys all interference effects other than the coherent back scattering.Comment: 4 pages,5 figure

    Decohering d-dimensional quantum resistance

    Get PDF
    The Landauer scattering approach to 4-probe resistance is revisited for the case of a d-dimensional disordered resistor in the presence of decoherence. Our treatment is based on an invariant-embedding equation for the evolution of the coherent reflection amplitude coefficient in the length of a 1-dimensional disordered conductor, where decoherence is introduced at par with the disorder through an outcoupling, or stochastic absorption, of the wave amplitude into side (transverse) channels, and its subsequent incoherent re-injection into the conductor. This is essentially in the spirit of B{\"u}ttiker's reservoir-induced decoherence. The resulting evolution equation for the probability density of the 4-probe resistance in the presence of decoherence is then generalised from the 1-dimensional to the d-dimensional case following an anisotropic Migdal-Kadanoff-type procedure and analysed. The anisotropy, namely that the disorder evolves in one arbitrarily chosen direction only, is the main approximation here that makes the analytical treatment possible. A qualitatively new result is that arbitrarily small decoherence reduces the localisation-delocalisation transition to a crossover making resistance moments of all orders finite.Comment: 14 pages, 1 figure, revised version, to appear in Phys. Rev.

    BIOSORPTION OF METHYLENE BLUE FROM WASTE WATER USING LEBANESE CYMBOPOGON CITRATUS (CITRONNELLE)

    Get PDF
    The objective of this study was to investigate the possibility of using Lebanese Cymbopogon citratus stem as an alternative adsorbent for the removal of methylene blue from aqueous solutions. Different parameters such as the effect of initial concentration, pH, adsorbent dose, contact time and temperature were studied. Maximum adsorption capacity (61%) of MB was obtained at PH=6 an initial concentration 200 mg/L after 24h and at 25 ˚C. The adsorption isotherm was better described by a Freundlich model rather than a Langmiur model. Based on these results, it can be concluded that the stems of Cymbopogon citratus is effective as an alternative adsorbent for MB remediation in waste water
    corecore