84 research outputs found

    Dissipation of vibration in rough contact

    Get PDF
    The relationship which links the normal vibration occurring during the sliding of rough surfaces and the nominal contact area is investigated. Two regimes are found. In the first one, the vibrational level does not depend on the contact area, while in the second one, it is propor- tional to the contact area. A theoretical model is proposed. It is based on the assumption that the vibrational level results from a competition between two processes of vibration damping, the internal damping of the material and the contact damping occurring at the interface

    Nucleotide variation, haplotype structure, and association with end-stage renal disease of the human interleukin-1 gene cluster

    Get PDF
    A dense gene-based SNP map was constructed across a 360-kb region containing the interleukin-1 gene cluster (IL1A, IL1B, and IL1RN), focusing on IL1RN. In total, 95 polymorphisms were confirmed or identified primarily by direct sequencing. Polymorphisms were precisely mapped to completed BAC and genomic sequences spanning this region. The polymorphisms were typed in 443 case-control subjects from Caucasian and African American groups. Consecutive pair-wise marker linkage disequilibrium was not strictly correlated with distance and ranged from D′ = 0.0079 to 1.000 and D′ = 0.0521 to 1.0000 in Caucasians and African Americans, respectively. Single markers and haplotypes in IL1 cluster genes were evaluated for association with end-stage renal disease (ESRD). Eleven SNPs show some evidence of association with ESRD, with the strongest associations in two IL1A variants, one SNP, rs1516792-3, in intron 5 (p = 0.0015) and a 4-bp insertion/deletion within the 3′UTR, rs16347-2 (p = 0.0024), among African Americans with non-T2DM-associated ESRD

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    First measurement of θ<inf>13</inf> from delayed neutron capture on hydrogen in the Double Chooz experiment

    Get PDF
    The Double Chooz experiment has determined the value of the neutrino oscillation parameter θ13 from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds sin22θ13=0.097±0.034 (stat.)±0.034 (syst.), excluding the no-oscillation hypothesis at 2.0. This result is consistent with previous measurements of sin22θ13
    corecore