456 research outputs found

    Simulation Results on the Impact of Changes in the Main EU Policy Tools on Farm Investment Behaviour. Factor Markets Working Document No. 56, June 2013

    Get PDF
    This paper completes the comparative analysis of the investment demand behaviour, of a sample of specialised arable crop farms, for farm buildings and machinery and equipment, as a function of the different types and levels of Common Agricultural Policy support, in selected European Union Member States. This contribution focuses on their quantitative interdependence calculating the relevant elasticity measures. In turn, they constitute the methodological tool to simulate the percentage expected change in average net investment levels associated to the implementation of the, recently proposed and currently under discussion, reductions in the Pillar I Direct Payments disbursed under the Common Agricultural Policy. Evidence suggests a statistically significant elastic and inelastic relationship between both types of subsidies and the investment levels for both asset classes in Germany and Italy, respectively. An elastic dependence of investment in farm buildings on decoupled subsidies exists in Hungary while changes in the level of coupled payments appear to translate into less than proportional changes in the demand for both farm buildings and machinery and equipment in France. Coupled payments appear to influence the UK demand for both asset classes in an elastic manner while decoupled support seems to induce a similar effect on investment in machinery and equipment. Since the currently discussed Common Agricultural Policy reform options imply, almost exclusively, a reduction in the level of support granted through Direct Payments, simulated effects were expected to reveal a worsening of the farm investment prospects for both asset types (i.e., a larger negative investment or a smaller positive one). The actual evidence largely respects this expectation with the sole exception of investment in machinery and equipment in France and Italy reaching smaller negative or larger positive levels irrespectively of the magnitude of the implemented cuts in Direct Payments

    Spitzer And Herschel Multiwavelength Characterization Of The Dust Content Of Evolved H Ii Regions

    Get PDF
    We have analyzed a uniform sample of 16 evolved H II regions located in a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign Galactic field centered at (l,b) = (30 Degree-Sign , 0 Degree-Sign ) and observed as part of the Herschel Hi-GAL survey. The evolutionary stage of these H II regions was established using ancillary radio-continuum data. By combining Hi-GAL PACS (70 {mu}m, 160 {mu}m) and SPIRE (250 {mu}m, 350 {mu}m, and 500 {mu}m) measurements with MIPSGAL 24 {mu}m data, we built spectral energy distributions of the sources and showed that a two-component gray-body model is a good representation of the data. In particular, wavelengths \u3e70 {mu}m appear to trace a cold dust component, for which we estimated an equilibrium temperature of the big grains (BGs) in the range 20-30 K, while for {lambda} \u3c 70 {mu}m, the data indicate the presence of a warm dust component at temperatures of the order of 50-90 K. This analysis also revealed that dust is present in the interior of H II regions, although likely not in a large amount. In addition, the data seem to corroborate the hypothesis that the main mechanism responsible for the (partial) depletion of dust in H II regions ismore » radiation-pressure-driven drift. In this framework, we speculated that the 24 {mu}m emission that spatially correlates with ionized gas might be associated with either very small grain or BG replenishment, as recently proposed for the case of wind-blown bubbles. Finally, we found that evolved H II regions are characterized by distinctive far-IR and submillimeter colors, which can be used as diagnostics for their identification in unresolved Galactic and extragalactic regions.« les

    Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299).

    No full text
    We compared the effects of monotherapy (photodynamic therapy or chemotherapy) versus combination therapy (photodynamic therapy plus a specific drug) on the non-small cell lung cancer cell line H1299. Our aim was to evaluate whether the additive/synergistic effects of combination treatment were such that the cytostatic dose could be reduced without affecting treatment efficacy. Photodynamic therapy was done by irradiating Photofrin-preloaded H1299 p53/p16-null cells with a halogen lamp equipped with a bandpass filter. The cytotoxic drugs used were cis-diammine-dichloroplatinum [II] (CDDP or cisplatin) and 2',2'-difluoro-2'-deoxycytidine (gemcitabine). Various treatment combinations yielded therapeutic effects (trypan blue dye exclusion test) ranging from additive to clearly synergistic, the most effective being a combination of photodynamic therapy and CDDP. To gain insight into the cellular response mechanisms underlying favorable outcomes, we analyzed the H1299 cell cycle profiles and the expression patterns of several key proteins after monotherapy. In our conditions, we found that photodynamic therapy with Photofrin targeted G0-G1 cells, thereby causing cells to accumulate in S phase. In contrast, low-dose CDDP killed cells in S phase, thereby causing an accumulation of G0-G1 cells (and increased p21 expression). Like photodynamic therapy, low-dose gemcitabine targeted G0-G1 cells, which caused a massive accumulation of cells in S phase (and increased cyclin A expression). Although we observed therapeutic reinforcement with both drugs and photodynamic therapy, reinforcement was more pronounced when the drug (CDDP) and photodynamic therapy exert disjointed phase-related cytotoxic activity. Thus, if photodynamic therapy is appropriately tuned, the dose of the cytostatic drug can be reduced without compromising the therapeutic response

    Return to competition in a chronic low back pain runner: beyond a therapeutic exercise approach, a case report

    Get PDF
    Chronic low back pain (CLBP) is a disabling condition affecting both quality of life and performance in athletes. Several approaches have been proposed in the field of physiotherapy, manual therapy, physical exercise and counseling. None apparently is outdoing the other with the exception of trunk stability exercises in specific conditions. The present paper describes a clinical success in managing a CLBP runner affected by MRI documented disk herniation via dietary change. Dietary changes allowed our patient that had failed with previous standard therapeutic approaches, to regain an optimal pain-free condition. We advance the hypothesis that a visceral-autonomic concomitant or primary disturbance possibly generating mild gastrointestinal discomfort in CLBP patients should be ruled out as a possible cause of pain and disability at the somato-motor level

    Global approaches and local strategies for phase unwrapping

    Get PDF
    Phase unwrapping, i.e. the retrieval of absolute phases from wrapped, noisy measures, is a tough problem because of the presence of rotational inconsistencies (residues), randomly generated by noise and undersampling on the principal phase gradient field. These inconsistencies prevent the recovery of the absolute phase field by direct integration of the wrapped gradients. In this paper we examine the relative merit of known global approaches and then we present evidence that our approach based on “stochastic annealing” can recover the true phase field also in noisy areas with severe undersampling, where other methods fail. Then, some experiments with local approaches are presented. A fast neural filter has been trained to eliminate close residue couples by joining them in a way which takes into account the local phase information. Performances are about 60–70% of the residues. Finally, other experiments have been aimed at designing an automated method for the determination of weight matrices to use in conjunction with local phase unwrapping algorithms. The method, tested with the minimum cost flow algorithm, gives good performances over both simulated and real data

    Sensory and chemical profile of a phenolic extract from olive mill waste waters in plant-base food with varied macro-composition

    Get PDF
    Phenols from olive mill waste water (OMWW) represent valuable functional ingredients. The negative impact on sensory quality limits their use in functional food formulations. Chemical interactions phenols/biopolymers and their consequences on bioactivity in plant-base foods have been widely investigated, but no studies to date have explored the variation of bitterness, astringency and pungency induced by OMWW phenols as a function of the food composition. The aim of the paper was to profile the sensory and chemical properties of phenols from OMWW in plant-base foods varied in their macro-composition. Four phenol concentrations were selected (0.44, 1.00, 2.25, 5.06 g/kg) to induce significant variations of bitterness, sourness, astringency and pungency in three plant-base food: proteins/neutral pH \u2013 bean pur\ue9e (BP), starch/neutral pH \u2013 potato pur\ue9e (PP), fiber/low pH \u2013 tomato juice (TJ). The macro-composition affected the amount of the phenols recovered from functionalized food. The highest recovery was from TJ and the lowest from BP. Two groups of 29 and 27 subjects, trained to general Labelled Magnitude Scale and target sensations, participated in the evaluation of psychophysical curves of OMWW phenols and of functionalized plant-base foods, respectively. Target sensations were affected by the food macro-composition. Bitterness increased with phenol concentration in all foods. Astringency and sourness slightly increased with concentration, reaching the weak-moderate intensity at the highest phenol concentration in PP and TJ only. Pungency was suppressed in BP and perceived at weak-moderate intensity in PP and TJ sample at the highest phenol concentration. Proteins/neutral pH plant-food (BP) resulted more appropriate to counteract the impact of added phenol on negative sensory properties thus allowing to optimize the balance between health and sensory properties

    Sensory and chemical profile of a phenolic extract from olive mill waste waters in plant-base food with varied macro-composition

    Get PDF
    Phenols from olive mill waste water (OMWW) represent valuable functional ingredients. The negative impact on sensory quality limits their use in functional food formulations. Chemical interactions phenols/biopolymers and their consequences on bioactivity in plant-base foods have been widely investigated, but no studies to date have explored the variation of bitterness, astringency and pungency induced by OMWW phenols as a function of the food composition. The aim of the paper was to profile the sensory and chemical properties of phenols from OMWW in plant-base foods varied in their macro-composition. Four phenol concentrations were selected (0.44, 1.00, 2.25, 5.06 g/kg) to induce significant variations of bitterness, sourness, astringency and pungency in three plant-base food: proteins/neutral pH \u2013 bean pur\ue9e (BP), starch/neutral pH \u2013 potato pur\ue9e (PP), fiber/low pH \u2013 tomato juice (TJ). The macro-composition affected the amount of the phenols recovered from functionalized food. The highest recovery was from TJ and the lowest from BP. Two groups of 29 and 27 subjects, trained to general Labelled Magnitude Scale and target sensations, participated in the evaluation of psychophysical curves of OMWW phenols and of functionalized plant-base foods, respectively. Target sensations were affected by the food macro-composition. Bitterness increased with phenol concentration in all foods. Astringency and sourness slightly increased with concentration, reaching the weak-moderate intensity at the highest phenol concentration in PP and TJ only. Pungency was suppressed in BP and perceived at weak-moderate intensity in PP and TJ sample at the highest phenol concentration. Proteins/neutral pH plant-food (BP) resulted more appropriate to counteract the impact of added phenol on negative sensory properties thus allowing to optimize the balance between health and sensory properties

    Foreground influence on primordial non-Gaussianity estimates: needlet analysis of WMAP 5-year data

    Get PDF
    We constrain the amplitude of primordial non-Gaussianity in the CMB data taking into account the presence of foreground residuals in the maps. We generalise the needlet bispectrum estimator marginalizing over the amplitudes of thermal dust, free-free and synchrotron templates. We apply our procedure to WMAP 5 year data, finding fNL= 38\pm 47 (1 \sigma), while the analysis without marginalization provides fNL= 35\pm 42. Splitting the marginalization over each foreground separately, we found that the estimates of fNL are positively cross correlated of 17%, 12% with the dust and synchrotron respectively, while a negative cross correlation of about -10% is found for the free-free component.Comment: Submitted to MNRA

    Direct Estimate of Cirrus Noise in Herschel Hi-GAL Images

    Get PDF
    In Herschel images of the Galactic plane and many star forming regions, a major factor limiting our ability to extract faint compact sources is cirrus confusion noise, operationally defined as the "statistical error to be expected in photometric measurements due to confusion in a background of fluctuating surface brightness". The histogram of the flux densities of extracted sources shows a distinctive faint-end cutoff below which the catalog suffers from incompleteness and the flux densities become unreliable. This empirical cutoff should be closely related to the estimated cirrus noise and we show that this is the case. We compute the cirrus noise directly, both on Herschel images from which the bright sources have been removed and on simulated images of cirrus with statistically similar fluctuations. We connect these direct estimates with those from power spectrum analysis, which has been used extensively to predict the cirrus noise and provides insight into how it depends on various statistical properties and photometric operational parameters. We report multi-wavelength power spectra of diffuse Galactic dust emission from Hi-GAL observations at 70 to 500 microns within Galactic plane fields at l= 30 degrees and l= 59 degrees. We find that the exponent of the power spectrum is about -3. At 250 microns, the amplitude of the power spectrum increases roughly as the square of the median brightness of the map and so the expected cirrus noise scales linearly with the median brightness. Generally, the confusion noise will be a worse problem at longer wavelengths, because of the combination of lower angular resolution and the rising power spectrum of cirrus toward lower spatial frequencies, but the photometric signal to noise will also depend on the relative spectral energy distribution of the source compared to the cirrus.Comment: 4 pages (in journal), 3 figures, Astronomy and Astrophysics, accepted for publication 13 May 201
    corecore