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Summary. —Phase unwrapping, i.e. the retrieval of absolute phases from wrapped,
noisy measures, is a tough problem because of the presence of rotational inconsis-
tencies (residues), randomly generated by noise and undersampling on the principal
phase gradient field. These inconsistencies prevent the recovery of the absolute
phase field by direct integration of the wrapped gradients. In this paper we examine
the relative merit of known global approaches and then we present evidence that
our approach based on “stochastic annealing” can recover the true phase field also
in noisy areas with severe undersampling, where other methods fail. Then, some ex-
periments with local approaches are presented. A fast neural filter has been trained
to eliminate close residue couples by joining them in a way which takes into account
the local phase information. Performances are about 60–70% of the residues. Fi-
nally, other experiments have been aimed at designing an automated method for the
determination of weight matrices to use in conjunction with local phase unwrapping
algorithms. The method, tested with the minimum cost flow algorithm, gives good
performances over both simulated and real data.

PACS 07.05.Pj – Image processing.
PACS 07.05.Mh – Neural networks, fuzzy logic, artificial intelligence.
PACS 02.60.Pn – Numerical optimization.

1. – Introduction

Phase unwrapping is a problem which arises in various realms of signal processing, in
particular Synthetic Aperture Radar Interferometry (INSAR) [1]. It consists of retrieving

(∗) Paper presented at the Workshop on Synthetic Aperture Radar (SAR), Florence, 25-26
February, 1998.
(∗∗) The authors of this paper have agreed to not receive the proofs for correction.
(∗∗∗) Support for this work was provided through a post-doc grant by the Istituto Nazionale di
Fisica della Materia (INFM).
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an absolute phase field, starting from the knowledge of the so-called wrapped phase, i.e.
its principal value in (−π, π], by adding to every sample the proper number of 2π-cycles.
Since several solutions correspond to the same wrapped phase field, phase unwrapping
is an ill-posed problem.

The most peculiar aspect of phase unwrapping in the two-dimensional case is the
occurrence of point-like inconsistencies in the wrapped gradient field, called residues.
Such singularities arise as a consequence of incorrect sampling of the phase field (aliasing),
which can be due to excessive noise, critical surface slopes, or both.

In the absence of residues, phase unwrapping can be performed without problems,
and any method gives the same, unique absolute phase surface. The real challenge in
phase unwrapping is thus to eliminate the effect of the residues. Approaches to this
problem are usually subdivided into “global” or “local”.

Global phase unwrapping methods attempt to retrieve an absolute phase field which
satisfies some a priori criteria, such as smoothness, while retaining its closeness to the
measured phase data as much as possible.

Local algorithms aim at correcting locally the phase gradient field, so as to eliminate
the residues. The choice of the locations where to apply the corrections must of course
rely again on a priori assumptions about the solution.

In the first part of this paper, after introducing the mathematical problem of phase
unwrapping, we present a brief review on known global methods and comparison of their
performances, then the results obtained using an approach based on stochastic annealing
with a Bayesian inference model, that proves to operate properly also with severely
undersampled noisy phase fields. In this case, some global a priori information is used,
by introducing a probabilistic model for the absolute phase surface.

We then introduce local methodologies, and the way in which local phase unwrapping
methods try to eliminate residues by joining them in pairs. We illustrate an experiment
aimed at training a feed-forward neural network to recognize and eliminate close residue
couples by taking into account the local phase information. The Multi-Layer Percep-
tron (MLP), trained over simulated phase fields of various levels of coherence and slope
levels, to recognize and eliminate in the best way adjacent residue couples, has been
then tested over other simulated data. The measured performances are of the order of
60–70% of residues eliminated. This renders the approach a valid pre-processing step to
drastically reduce the number of residues on an interferogram, which could increase the
time performances of other, more powerful residue-joining algorithms.

Another issue of phase unwrapping which has been investigated concerns the consid-
eration of any piece of information other than the wrapped phase alone, to set up weight
maps to be used in conjunction with weighted phase unwrapping algorithms. In the
last part of this paper, we present some recent results about a method to automatically
arrange any number of information layers into a weight map having a given number of
weight levels. The method uses a Self-Organizing Map (SOM) neural network to auto-
matically cluster a set of feature vectors, obtained by applying an a priori rough order-
ing relationship to the information layer. The methodology, applied to simulated phase
data, has been used in conjunction with the local phase unwrapping algorithm known as
minimum cost flow. Results show significant improvements in the performances of the
algorithm by using multi-valued, automatically-generated weight maps, with respect to
double-valued, fixed-threshold ones.
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2. – Phase unwrapping problem

2.1. Notation and definitions . – In this section, we introduce the phase unwrapping
problem. We denote the absolute phase field by f(x, y), and the measured one by g(x, y).
Between the two fields there is the following relation:

g(x, y) = W [f(x, y)]
= mod {f(x, y) + π, 2π} − π,

(1)

where W is the wrapping operator, defined here in terms of the modulo-2π operation.
Phase unwrapping means recovering the f field from the observed wrapped field g.

An important quantity is the vector field A(x, y), given by

A(x, y) = W[∇∇∇g(x, y)],(2)

where ∇∇∇ = (∇x ,∇y ) is the discrete gradient operator, defined as

∇x g(x, y) = [g(x + 1, y)− g(x, y)] ,
∇y g(x, y) = [g(x, y + 1)− g(x, y)] .

(3)

If the Nyquist condition

|∇∇∇f(x, y)| < π(4)

is verified everywhere on the grid, then phase unwrapping is exactly soluble and the
solution is ∇∇∇f = A; the absolute phase surface is obtained by integrating ∇∇∇f over the
whole grid along any path encompassing all the field sites once.

In real interferograms, however, condition (4) is often violated because of aliasing and
noise; the detectable effect of this is the presence of pointlike inconsistencies for field A.
Quantitatively, one can calculate the integral of A over any 2×2 square having (x, y) as
a corner, i.e.

I(x, y) =
1
2π

∮
A · dl

=
1
2π

[
Ax(x, y) + Ay(x + 1, y)− Ax(x, y + 1)− Ay(x, y)

]
.

(5)

It has been shown [2] that I(x, y) will always be either −1, 0, or 1. Locations with I 
= 0
are called residues; the presence of residues implies the violation of the correct sampling
condition (4). In the presence of inconsistencies, the relation ∇∇∇f = A is not valid, and
the following one has to be used instead:

∇∇∇f(x, y) = A(x, y) + 2πk(x, y),(6)

where k(x, y) is a certain vector field of integers. Solving phase unwrapping is equivalent
to finding a field k which restores the field ∇∇∇f . Such field must satisfy the consistency
condition

∇∇∇× [A(x, y) + 2πk(x, y)] = 0.(7)



208 L. GUERRIERO, A. REFICE S. STRAMAGLIA, G. SATALINO ETC.

Many methods have been proposed to solve this problem. However, finding a solution
consistent with the real terrain features is very difficult and problem-dependent, so that
no efficient method exists which is agreed upon by all researchers.

2.2. Residue topology . – Normally, interference fringes behave as closed contour lines,
so that, in good sampling conditions, every minimal circulation, defined in (5), involves
an even number of crossings of these discontinuities, and no residue is generated. Noise,
on the contrary, modifies locally some of the principal phase derivatives (PPDs), which
can generate either single spurious fringe segments or local “breaks” into the existing
topographical fringes. In the same way, a region of critical terrain slopes can also generate
a local violation of the Nyquist condition, and so cause isolated absolute phase derivative
(APD) values to exceed π in magnitude, so that one or more 2π-cycles are locally lost in
the wrapping operation, and fringes result broken.

In the case of SAR interferometry, critical terrain slopes are those close to the look-
angle value. Due to the particular geometric configuration of remotely-sensed SAR data,
the mentioned condition generates phase gradients of more than π in magnitude between
adjacent pixels, thus causing phase aliasing. Another critical condition is layover, which
occurs when terrain slopes exceed locally the look angle value, thus causing a local
inversion of the phase gradient sign.

Since every open fringeline brings two opposite-sign residues at its ends, it is clear that
in both noisy and poor sampling conditions the residue number increases dramatically.

From a quantitative viewpoint, it has been shown by Monte Carlo simulations [3, 4]
that, under conditions normally encountered on real interferograms, the residues located
in adjacent circulations are the majority (more than 60%–70%). Nevertheless, only a
small fraction of them is made of easily removable isolated dipoles, while the majority
form clusters of inconsistencies, which cannot be easily paired due to possible ambiguities
in their coupling order.

An isolated dipole can be easily eliminated by applying corrections taken among a
finite set. For the easiest configurations, i.e. the two residues located on adjacent pixels,
a single correction is needed to “solve” the dipole.

It is always possible to eliminate all inconsistencies, deterministically applying a pre-
defined set of rules to all the dipoles present on the phase field [5]. However, different
solutions are obtained for different scanning orders on the image. Therefore, to find
acceptable residue pairings and the relative cutlines, it seems necessary to analyze the
local phase field that possibly contains all relevant information.

3. – Global methods

As mentioned, global methods attempt to recover the absolute phase field by utilizing
the wrapped values together with some additional assumptions, such as the absence of
undersampled areas, the noise probability distribution, and the regularity of the phase
field to be recovered. The prototype for all the global approaches is the least-squares
method, where only the information on the probability distribution of the noise is added.
In the absence of gradient field inconsistencies, this method gives results identical to those
obtained using direct 2-D integration of the wrapped phase gradient field. If the phase
noise distribution is actually similar to a Gaussian, the recovered phase field gives a good
approximation of the true one, with errors localized near the inconsistencies. In case of
severe undersampling, however, with noise distributions significantly different from the
Gaussian case, this method badly fails, and additional information must be added.
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Other methods are based on the ideas introduced by Tikhonov for solving ill-posed
problems, by introducing as a priori knowledge some constraints expressed as a regular-
ization condition.

The success of these methods applied to the unwrapping of the phase field depends
strongly on the choice of the regularization operators. In the following we briefly re-
view the proposed global methods comparing their performances on simulated noisy and
undersampled fields. We show that our procedure based on stochastic annealing ap-
pears capable of recovering the true phase field also in heavily undersampled noisy areas,
where the other known methods fail, provided that a proper regularizing constraint can
be established.

3.1. Least-squares method . – This method [6] is based on the following assumptions: i)
a Gaussian model for noise and ii) the true phase gradient’s being less than π everywhere;
it follows that all the residues are assumed to be noise-induced. From (6), field A is
evaluated as an estimate for the true phase gradient; the solution is searched as the
scalar field f whose discrete gradient is closest to A in the least-squares sense, i.e. the
minimizer of the following functional:

L[f ] =
∑
(x,y)

[∇∇∇f(x, y)−A(x, y)]2.(8)

The least-squares approach has been shown to be equivalent to solve a set of Poisson
equations on a rectangular grid with Neumann boundary conditions [7]. This has sug-
gested the use of fast, direct algorithms specialized in solving elliptic partial differential
equations, such as Fast Fourier Transform (FFT) methods [8].

The LMS algorithm fails to retrieve the original absolute phase when the assumptions
stated above are not met, i.e. in aliasing conditions. In the case of SAR interferometry, it
has been shown [9,10] that treating noise as Gaussian leads to a bias in the least-square
estimation of the gradient of the true phase field.

This method gives identical results as the direct integration in the absence of gradient
field inconsistencies. When Gaussian noise is the only source of residues, the recovered
phase field gives a good approximation of the true one, with errors localized near the
inconsistencies. In case of severe undersampling, this method badly fails.

3.2. Tikhonov regularization theory . – Marroquin and Rivera [11] generalized the
least-squares algorithm, by introducing a regularization term which performs noise re-
duction (even if this noise does not generate integration-path inconsistencies). Following
Tikhonov regularization theory [12], the solution of phase unwrapping is assumed to be
the minimizer of the quadratic functional:

H[f ] = R[f ] + λL[f ],(9)
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where R is a smoothing functional based on second-order differences:

R =
∑

[∇x f(x, y)−∇x f(x − 1, y)]2 +

+
∑

[∇y f(x, y)−∇y f(x, y − 1)]2 +

+
∑

[∇x f(x, y)−∇x f(x, y − 1)]2 +

+
∑

[∇y f(x, y)−∇y f(x − 1, y)]2 ,

(10)

and L is that defined in (8).
The parameter λ controls the compromise between smoothness (minimization of R)

and fidelity to the data (minimization of L). If one has prior knowledge about the noise
amplitude or the roughness of the solution, then the correct value of λ may be obtained
as described by Marroquin and Rivera [11]. In most cases, however, λ must be adjusted
by hand. Various algorithms for the minimization of H have been studied [11]. Although
this algorithm is effective in noise reduction, it works under the same basic assumptions
i) and ii) as LMS, reported in subsect. 3.1; hence it fails to reconstruct the correct input
surface in aliasing conditions.

3.3. Parallel algorithm based on Bayesian theory . – An interesting approach to PU
in a Bayesian framework has been proposed by Marroquin and coworkers [13]. The true
phase field is written as

f(x, y) = g(x, y) + 2πk(x, y),(11)

where k(x, y) counts the 2π-cycles to be added to the observed wrapped phase(1). Instead
of constraining {k} to be integer-valued, the following constraint is introduced:

k(x1, y1)− k(x2, y2) = r (k(x1, y1)− k(x2, y2)) ,(12)

where r(a) is the closest integer to a, and (x1, y1) and (x2, y2) are neighboring pixels.
The fact that {k} is treated as a real-valued field while constraining its differences to be
integer is crucial for the correct behavior of the algorithm. A functional is introduced to
model constraint (12):

V [k] =
∑[

k(x1, y1)− k(x2, y2)− r (k(x1, y1)− k(x2, y2))
]2

.(13)

The posterior energy for field {k} is then given by

U [k] = R[g + 2πk] + λV [k],(14)

where R is a smoothing functional, and the parameter λ controls the smoothing per-
formed by the algorithm. Minimization of U can be rapidly solved by a Newtonian
descent automaton which starts from the initial point k(0) = −g/2π.

(1) Note the difference between the scalar {k} field used in this section and the vector k field
introduced in sect. 2; the latter is to be added to the phase gradient vector field.
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This algorithm has shown to be capable of filtering noise (even in the case that it
does not lead to inconsistencies) and to interpolate the reconstructed phase over regions
of invalid information.

We remark that this algorithm does not work under the assumptions i) and ii) stated
in subsect. 3.1, but its performances are influenced by the peculiar way in which the
integer nature of PU is taken into account. Indeed, the parameter λ controls both the
noise reduction and the closeness to integer values for field {k}. In subsect. 3.5 we will
describe a new regularization scheme which dispels the two assumptions described above
and fully exploits the integer nature of PU.

3.4. Phase unwrapping method based on network programming . – Costantini [14] pro-
posed an interesting algorithm based on network programming. He focuses on the integer
vector field k which must be added to wrapped phase gradient in order to recover the
true phase gradient (see eq. (6)). A cost functional is introduced as a weighted sum of
absolute values of field k:

C[k] =
∑

c1(x, y) |kx(x, y)|+
∑

c2(x, y) |ky(x, y)| .(15)

The solution of phase unwrapping is assumed to be the integer field k which minimizes
C among those verifying the constraint (7). Due to the form of cost functional C, this
problem is recognized to be equivalent to the problem of finding the minimum cost flow
on a network, for the solution of which there exist very efficient techniques.

We observe that the performance by this algorithm is completely dependent on the
choice of weights {c}. In particular, choosing constant weights leads often to unsatis-
factory results. A version of this algorithm, developed by Eineder et al. [15], includes
a pre-processing stage where the weights are fixed according to information such as the
amplitude image a, the residues density r and the estimated raw slope s. For each pixel
and for each quality a, r, s an indicator ia, ir, is is set to one if the corresponding
quality is lower than a threshold ta, tr, ts, otherwise the indicator is set to zero. Two
quantities are calculated, ca = 99× ia+1 and crs = 99× ir× is+1. Finally the weights
are generated as c = max(ca, csr). The authors report optimal values of thresholds for
unwrapping interferograms from alpine regions [15]. It seems to us that the problem of
determining weights is here only changed into the problem of finding optimal thresh-
olds values. A fully automatic strategy to fix the weights requires, in our view, further
investigation. The issue is addressed later in this paper (see sect. 5).

3.5. Stochastic relaxation algorithm for phase unwrapping . – The problem of finding
the most probable absolute phase field when only a wrapped field corrupted by noise
and undersampling is available, is a typical “maximum a posteriori” (MAP) estimate
problem. When the probabilistic relation among phase values in neighboring pixels is
described as a Markov random field, it is well known that the probability distribution can
be made to correspond to the Gibbs distribution of a thermodynamic physical system
characterized by a given energy and temperature, if the energy function is properly
chosen.

The convergence to the MAP field is not guaranteed by deterministic search methods,
which can get trapped into local maxima. On the contrary, probabilistic relaxation
methods, such as the stochastic annealing, where the “temperature” is progressively
lowered, simulating the annealing processes by which physical systems can be driven to
their minimum energy state, can be proved to converge to the searched MAP field.
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Our algorithm formulates PU as a constrained optimization problem for the integer
vector field k in eq. (6) [16]. Such field must satisfy the constraint (7), hence, the following
functional is introduced:

C[k] =
∑
(x,y)

{
kx(x, y + 1)− kx(x, y)− ky(x + 1, y) + ky(x, y)− I(x, y)

}2
,(16)

where I(x, y) is the quantity defined in eq. (5). One can easily check that the constraint
(7) is equivalent to C[k] = 0. The solution of the phase unwrapping problem is assumed
as the phase field corresponding to the vector k which minimizes R[A+2πk] among those
verifying the constraint C[k] = 0, where R[·] is the functional in eq. (10). To solve the
optimization problem, k is modeled as a Markov random field (MRF) with probability
function

Pβ,λ(k) =
exp [−H[k]]∑
k′ exp [−H[k′]]

,(17)

where

H[k] = β (R[A+ 2πk] + λC[k]) .(18)

The optimization problem is solved by sampling the MRF in the limit β, λ → ∞, using
the simulated annealing technique [17].

Some remarks are in order. During the processing, only integer numbers of 2π-
cycles are added to the wrapped phase field. Therefore, the algorithm removes only the
noise that leads to inconsistencies; filtering of the reconstructed surface is deferred to a
subsequent stage. As a final remark, we note that this algorithm does not require the
estimation of parameters which control the compromise between regularity and fidelity
to the data.

3.6. Experiments. – In this section we present the results we have obtained by using
the algorithms described above on simulated phase surfaces.

In fig. 1 (a) we report a smooth Gaussian simulated phase surface on a 100×100
grid. In fig. 1 (b) the corresponding residue map is depicted. This test surface exhibits
aliasing conditions due to topography alone, as can be seen from the regular location of
the residues.

The surface unwrapped by the LMS method is reported in fig. 1 (c); the reconstruction
errors due to the mentioned bias in the slope estimation are evident. The result obtained
by unwrapping the same surface by the algorithm based on Tikhonov regularization is
shown in fig. 1 (d); it is very close to the one from LMS. The output of the algorithm
described in subsect. 3.3 is depicted in fig. 1 (e); we observe spreading of errors from
inconsistencies. We used λ = 1 for both the algorithms described in subsects. 3.2 and 3.3.
The stochastic algorithm, instead, perfectly reconstructed the input surface (fig. 1 (f)).
We did not compare with the algorithm described in subsect. 3.4 because it would have
required fixing the weights according to some arbitrary criterion.

We have tested the robustness of the algorithms in noisy conditions. In fig. 2 (a),
the same simulated phase surface is shown as those illustrated in 1 (a), with added
interferometric noise [18], with coherence equal to 0.6. The corresponding residue map is
shown in fig. 2 (b). Now we have residues due to both noise- and topography-generated
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Fig. 1. – Comparison between global methods on a smooth surface: (a) Gaussian surface
(100×100 pixels); (b) residue map; (c) reconstructed surface by LMS; (d) reconstructed sur-
face by the method described in subsect. 3

.
2; (e) reconstructed surface by the method described

in subsect. 3
.
3; (f) reconstructed surface by the method described in subsect. 3

.
5.

aliasing. Figures 2 (c), (d), (e), and (f) show the surfaces reconstructed respectively by
LMS, Tikhonov regularization, Parallel Bayesian approach, and Stochastic algorithm.
We observe that the output from the algorithm described in subsect. 3.2 is a smoothed
version of the output from LMS. Both the parallel algorithm and the stochastic one show
robustness with respect to noise.
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Fig. 2. – Comparison between global methods on a noisy surface: (a) Synthetic surface (100×100
pixels) obtained by adding noise corresponding to coherence γ = 0.6 to the surface depicted in
fig. 1 (a); (b) residue map; (c) reconstructed surface by LMS; (d) reconstructed surface by
the method described in subsect. 3

.
2; (e) reconstructed surface by the method described in

subsect. 3
.
3; (f) reconstructed surface by the method described in subsect. 3

.
5.

4. – Local algorithms

Local phase unwrapping algorithms are generally aimed at removing locally the effects
of the residues. For instance, a classical solution consists in placing so-called ghost lines
or cutlines, i.e. arbitrary lines connecting residues of opposite sign, on which it is assumed
that the phase is in aliasing conditions, and then performing the integration along paths
avoiding these lines [19, 3, 20, 21]. In this way, the phase gradient is locally allowed to
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Fig. 3. – Principal Phase Derivative numbering. The pixels are here represented by the black
dots, while the gradients are represented by the segments joining them.

take any value greater than π in magnitude.
In the case of close residue couples, removal of the effects of the residues can equiva-

lently be accomplished by correcting locally the phase gradients by adding or subtracting
one phase cycle to their wrapped value. In the following, we restrict to this kind of in-
consistencies.

4.1. Neural network approach. – The purpose of our neural network approach is to see
whether it is possible to recognize local phase gradient configurations in a neighborhood
of any residue having at least another adjacent residue of opposite sign, so as to apply the
proper corrections, by analyzing a series of simulated examples. To this end, we exploit
the generalization properties of a feed-forward multi-layer perceptron (MLP), trained
with the back-propagation scheme [22].

The input layer of our network is given by 24 units, each receiving one of the 24
phase gradient values present in a window of 4×4 pixels, according to a conventional
numbering shown in fig. 3. Such windows are extracted from the interferogram, centered
on every minimal circulation giving a residue by the integral (5). The output layer is
composed by 24 binary units, whose values are intended as flags which give indications
about whether to apply (1) or not (0) the correction to each phase gradient site, consisting
in not wrapping its value, in order to restore the circulation and eliminate the residue.
The hidden layer of the network contains instead a number of neurons different for each
experiment, in order to test its learning and generalization capabilities.

The network has been trained on target flags, which determine whether the wrapped
values of the corresponding input principal phase gradients coincide (0) or not (1) with
the absolute phase gradients. In this way, the network should learn to recognize, by
looking at the local configurations of principal phase gradients, the phase gradient sites
where the “wrapping rule” stated above is actually violated.

The selected supervised training of the MLP, performed over a data set of patterns
extracted randomly from simulated phase fields, was meant to find a mapping function
that couples to any given input wrapped phase gradient configuration a certain output
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Fig. 4. – Residues left on the phase field after application of the MLP as a function of the
coherence level on the image, for different coherence levels in the training datasets: ♦ training
on γ = 0.6, ◦ training on γ = 0.75, × training on γ = 0.9.

combination of corrections.

4.2. Results. – An experiment was performed in order to assess the real possibilities
of this approach in various noise and topography conditions. A series of simulated ab-
solute phase fields was generated, constituted by cones (to reproduce all the azimuthal
exposition angles) and ramps of various heights and slopes, with added noise of various
coherence conditions (γ = 0.6, 0.75, and 0.9). Several training sessions were performed,
with a neural network having a hidden layer of 100 neurons. The graph in fig. 4 reports
the performance of the network trained on various noise levels, with respect to the elim-
ination of the residues in the central circulation of every 4×4 window. As can be seen,
MLPs trained on simulated fields of a given coherence level tend to better succeed in
eliminating residues on phase fields characterized by coherence equal to or higher than
that it has been trained on. This could be expected, since higher coherence entails residue
couples configurations easier to solve. The graph in fig. 4 shows that the performances
settle to the removal of around 70–80% of the initial number of residues.

It can be argued that larger windows would perhaps contain more information, so as
to improve the residue removal capabilities of the neural network. However, an increase
in the input and output vector sizes, say to a 6×6 window, would entail having 60 neurons
in input and 60 in output, which means increasing the computational load with respect
to the case with 24 input/output units. Moreover, to properly train such a complex
network, a much higher number of simulated examples would be necessary. This seems
to set an intrinsic limit to the local methods based on the determination of the true
cutline from the local configuration of the wrapped phase field. It seems impractical
to extract this information, with the neural approach, at least within the limits of an
acceptable complexity. Additional a priori information is therefore needed for a correct
phase unwrapping.
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Fig. 5. – The general scheme of the weight generation procedure described in the text.

5. – Weight map determination for phase unwrapping

It has been shown how the ill-posedness of the phase unwrapping mathematical prob-
lem makes it impossible to have a “universal” algorithm, i.e. one which works in all
situations: the most powerful global algorithms, which make use of regularization meth-
ods, work on assumptions about the actual smoothness of the solution, and therefore fail
on surfaces which do not meet those characteristics; local, residue-joining procedures,
although fast, are able to eliminate only a fraction of the phase residues on the inter-
ferogram, if a reasonable level of complexity is to be maintained. Alternatively, local
algorithms can also be made to join and eliminate all the residues on an image, but
the criteria for choosing coupling orders, and the actual paths followed to join distant
residues, remain arbitrary to a large extent.
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Fig. 6. – Performances of the WMCF algorithm working with various weight maps derived
via the method described in the text. (a) percentage of wrongly-unwrapped pixels; (b) total
dynamics of the error surface, in 2π phase cycles. The legend reports the input information
layers used: the symbols mean coherence (γ), amplitude of the master and slave images (A1 and
A2), phase gradient amplitude (|∇φ|), and residue density (|R|).

In practice, then, all phase unwrapping algorithms have to rely on external infor-
mation to reach good performances. In this view, an automatic methodology has been
worked out to produce weight maps for use in conjunction with phase unwrapping algo-
rithms. It is the subject of the next sections.

5.1. Automated methodology . – Our methodology for weight map generation is a flex-
ible and automatic framework, easily extendable to any number of “information layers”.
Any number of such layers con be considered for input, with the only constraint that an
a priori relationship of each information layer with respect to weight values has to be
established. The general scheme is shown in fig. 5.

In this way, each information layer is converted into a feature. Each pixel is thus
associated with a feature vector, of as many components as the number of input layers.
Such vectors can be represented in a multi-dimensional feature space, in which each axis
is ordered according to the a priori relationships. To render the method more robust
and less data-dependent, the vectors are clusterized in a self-consistent way by means of
a self-organizing map (SOM) neural network [23], into a predefined, arbitrary number of
weight levels. The final map is then generated by assigning each pixel to its nearest cluster
in the feature space, and associating a weight value given by the Euclidean distance of
that cluster from the origin, in the same space.

5.2. Experimental results. – Maps obtained in the way described in the preceding
section were used in conjunction with the weighted version of the minimum-cost flow al-
gorithm, introduced in subsect. 3.4, to test various performance parameters as a function
of both the number of input layers and of output weight levels.

The testing was made over simulated interferometric data, so that it was possible
to compare the obtained unwrapped phase with the original, simulated absolute phase
field. Testing was performed by calculating both the total number of wrongly-unwrapped
pixels, and the overall dynamics (in 2π-phase cycles) of the error. The main results are
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Fig. 7. – Information layers used for the unwrapping of the 1024×1024 real interferogram; (a)
wrapped phase, (b) coherence, (c) master image amplitude, (d) phase gradient.

reported in the graphs in fig. 6.
It can be seen how both the percentage of wrongly-unwrapped pixels, and the dy-

namics of the unwrapping error, in phase cycles, show a significant improvement as the
number of levels in the weight map is increased from 2 to 5. An improvement can also
be noted as the number of input information layers is increased.

The automatic methodology has been also applied to a real dataset consisting of a
ERS-1/ERS-2 tandem pair of images(2), acquired on June 5-6, 1996. Experiments were

(2) A pair of images acquired by the ERS-1 and ERS-2 satellites, respectively, over the same
earth location, with the time interval of 24 hours, is conventionally termed a “tandem” pair.
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Fig. 8. – Results of the MCF PU applied to the interferogram in fig. 7 (a), using a 3-levels
weight mask derived from 3 information layers, namely master amplitude, coherence, and phase
gradient. (a) Weight mask; (b) k-field (ghost lines); (c) unwrapped phase surface; (d) absolute
phase surface simulated from a DEM of the area; (e) unwrapped phase surface obtained with
LMS unwrapping.
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performed with various numbers of input layers and of mask levels. The best result
was chosen by comparing the dynamics of the unwrapped phase with the known height
dynamics found on the area, properly scaled by the factor taking into account the baseline
and the observation geometry.

Figure 7 reports the layers used for the unwrapping of a 1024×1024 pixel scene,
centered over the southern Apennines area of Valle del Sele. The area covered is about
40×40 km wide. Figure 8 shows the best results obtained with a 3-levels weight mask
derived from the 3 information layers of coherence, master amplitude, and phase gradient.
A visual comparison can be made between the unwrapped phase surface (fig. 8 (c)) and
the corresponding absolute phase surface as simulated from a Digital Elevation Model
(DEM) of the area (fig. 8 (d)). As a reference, the surface obtained through the classical
LMS algorithm is shown in fig. 8 (e), and shows considerable artifacts due to the strong
aliasing conditions.

6. – Conclusions

In this paper we have analyzed the performances and the limits of global and lo-
cal methods in the unwrapping of noisy and undersampled phase fields, such as those
typically encountered in SAR interferometry.

We have presented a short review of the known global methods and a comparison of
their performances and limitations when applied to the wrapped phase fields affected by
heavy noise and undersampling. A method based on stochastic annealing has been also
presented, which is able to recover the absolute phase field in rather extreme situations.

It has been shown how, in local methods, in order to eliminate ambiguities in the
recovered phase field, one has to avoid arbitrary assumptions in the identification of the
cutlines connecting pairs of residues of opposite sign. It has been shown that, even with a
neural approach, it is impractical to deduce a minimum set of true interconnecting rules
from the observed values in the local wrapped phase field. A neural approach such as
the one presented in the paper has a valid chance of application as a quick pre-processing
“filter”, intended to rapidly eliminate the most common type of residue couple, i.e. the
close dipoles due mainly to noise.

In order to introduce additional a priori information needed for the correct recovery
of the absolute phase field, an automated methodology has been presented. Tests on
simulated and real data have been reported, which show improvements in the yield of
weighted unwrapping algorithms such as the minimum cost flow, when run with weight
maps derived from several input information layers, and with more than two weight
values.
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