130 research outputs found

    SENSITIVITY OF STRESSES TO THE FORCES ACTING ON THE CAST PARTS OF FREIGHT-CAR BOGIE

    Get PDF
    Purpose. To determine the effect of the force components acting in the axle box and the central spring suspension on the stresses occurring in the solebar of the three-piece bogie. Methodology. To assess the effect of the forces acting on the solebar on the stresses in it, we developed a finite element model of the solebar. After that, we carried out an assessment of its stress-strain state under loading conditions corresponding to the І and ІІІ design modes. According to the results obtained, we determined the stress concentration points in the construction, which are selected as check ones for further studies. Also, as checkpoints we took the points corresponding to the sensor locations when estimating the stresses in the solebar during the tests. At the next stage, we applied unit loads in sequence at the interaction points of the solebar with the boxes and the central spring group. To obtain a more accurate result, the unit forces were balanced by the corresponding forces and moments of inertia. With each loading variant, tensors of stresses arising from the action of unit loads were obtained at checkpoints. On the basis of the stress tensors obtained, we determined the corresponding equivalent stresses - the sensitivity coefficients. Findings. The paper determines the stress sensitivity coefficients in the three-piece bogie solebar to external loads acting on the solebar from the side of axle box and central spring group. Based on the results of the assessment of the coefficients obtained, we determined the forces having the greatest influence on individual sections of the solebar. We estimated the possibility of using the obtained results in optimizing the parameters of the bogie spring suspension to increase the strength and durability of the solebar. Originality. For the first time, the effect of individual components of the forces acting on the solebar on the stresses in it has been estimated. Practical value. The obtained result can be used in the design and optimization of three-piece bogies, to improve the solebar durability. The stress tensors obtained can be used to estimate the effect of complex loading on the solebar strength and durability

    On insertion-deletion systems over relational words

    Full text link
    We introduce a new notion of a relational word as a finite totally ordered set of positions endowed with three binary relations that describe which positions are labeled by equal data, by unequal data and those having an undefined relation between their labels. We define the operations of insertion and deletion on relational words generalizing corresponding operations on strings. We prove that the transitive and reflexive closure of these operations has a decidable membership problem for the case of short insertion-deletion rules (of size two/three and three/two). At the same time, we show that in the general case such systems can produce a coding of any recursively enumerable language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure

    Knot Theory: from Fox 3-colorings of links to Yang-Baxter homology and Khovanov homology

    Full text link
    This paper is an extended account of my "Introductory Plenary talk at Knots in Hellas 2016" conference We start from the short introduction to Knot Theory from the historical perspective, starting from Heraclas text (the first century AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram colorings (1956). In the second section we describe how Fox work was generalized to distributive colorings (racks and quandles) and eventually in the work of Jones and Turaev to link invariants via Yang-Baxter operators, here the importance of statistical mechanics to topology will be mentioned. Finally we describe recent developments which started with Mikhail Khovanov work on categorification of the Jones polynomial. By analogy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang-Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants of links) will be discussed and expanded. Dedicated to Lou Kauffman for his 70th birthday.Comment: 35 pages, 31 figures, for Knots in Hellas II Proceedings, Springer, part of the series Proceedings in Mathematics & Statistics (PROMS

    Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering

    Get PDF
    We investigate the properties of the optical model wave function for light heavy-ion systems where absorption is incomplete, such as α+40\alpha + ^{40}Ca and α+16\alpha + ^{16}O around 30 MeV incident energy. Strong focusing effects are predicted to occur well inside the nucleus, where the probability density can reach values much higher than that of the incident wave. This focusing is shown to be correlated with the presence at back angles of a strong enhancement in the elastic cross section, the so-called ALAS (anomalous large angle scattering) phenomenon; this is substantiated by calculations of the quantum probability flux and of classical trajectories. To clarify this mechanism, we decompose the scattering wave function and the associated probability flux into their barrier and internal wave contributions within a fully quantal calculation. Finally, a calculation of the divergence of the quantum flux shows that when absorption is incomplete, the focal region gives a sizeable contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The figures are only available via anonynous FTP on ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat

    Chern-Simons Theory in the Temporal Gauge and Knot Invariants through the Universal Quantum R-Matrix

    Full text link
    In temporal gauge A_{0}=0 the 3d Chern-Simons theory acquires quadratic action and an ultralocal propagator. This directly implies a 2d R-matrix representation for the correlators of Wilson lines (knot invariants), where only the crossing points of the contours projection on the xy plane contribute. Though the theory is quadratic, P-exponents remain non-trivial operators and R-factors are easier to guess then derive. We show that the topological invariants arise if additional flag structure (xy plane and an y line in it) is introduced, R is the universal quantum R-matrix and turning points contribute the "enhancement" factors q^{\rho}.Comment: 27 pages, 17 figure

    The Architectural Design Rules of Solar Systems based on the New Perspective

    Full text link
    On the basis of the Lunar Laser Ranging Data released by NASA on the Silver Jubilee Celebration of Man Landing on Moon on 21st July 1969-1994, theoretical formulation of Earth-Moon tidal interaction was carried out and Planetary Satellite Dynamics was established. It was found that this mathematical analysis could as well be applied to Star and Planets system and since every star could potentially contain an extra-solar system, hence we have a large ensemble of exoplanets to test our new perspective on the birth and evolution of solar systems. Till date 403 exoplanets have been discovered in 390 extra-solar systems. I have taken 12 single planet systems, 4 Brown Dwarf - Star systems and 2 Brown Dwarf pairs. Following architectural design rules are corroborated through this study of exoplanets. All planets are born at inner Clarke Orbit what we refer to as inner geo-synchronous orbit in case of Earth-Moon System. By any perturbative force such as cosmic particles or radiation pressure, the planet gets tipped long of aG1 or short of aG1. Here aG1 is inner Clarke Orbit. The exoplanet can either be launched on death spiral as CLOSE HOT JUPITERS or can be launched on an expanding spiral path as the planets in our Solar System are. It was also found that if the exo-planet are significant fraction of the host star then those exo-planets rapidly migrate from aG1 to aG2 and have very short Time Constant of Evolution as Brown Dwarfs have. This vindicates our basic premise that planets are always born at inner Clarke Orbit. This study vindicates the design rules which had been postulated at 35th COSPAR Scientific Assembly in 2004 at Paris, France, under the title ,New Perspective on the Birth & Evolution of Solar Systems.Comment: This paper has been reported to Earth,Moon and Planets Journal as MOON-S-09-0007

    Quantum Holonomy in Three-dimensional General Covariant Field Theory and Link Invariant

    Full text link
    We consider quantum holonomy of some three-dimensional general covariant non-Abelian field theory in Landau gauge and confirm a previous result partially proven. We show that quantum holonomy retains metric independence after explicit gauge fixing and hence possesses the topological property of a link invariant. We examine the generalized quantum holonomy defined on a multi-component link and discuss its relation to a polynomial for the link.Comment: RevTex, 12 pages. The metric independence of path integral measure is justified and the case of multi-component link is discussed in detail. To be published in Physical Review

    A peculiar class of debris disks from Herschel/DUNES - A steep fall off in the far infrared

    Get PDF
    Aims. We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open Time Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3 sigma sensitivity of a few mJy at 100 um and 160 um. In addition, we obtained Herschel/PACS photometric data at 70 um for HIP 103389. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths > 70 um. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a very distinct range of grain sizes is implied to dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. (abridged)Comment: 14 pages, 4 figures, accepted by A&

    The Computational Complexity of Knot and Link Problems

    Full text link
    We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted, capable of being continuously deformed without self-intersection so that it lies in a plane. We show that this problem, {\sc unknotting problem} is in {\bf NP}. We also consider the problem, {\sc unknotting problem} of determining whether two or more such polygons can be split, or continuously deformed without self-intersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in {\bf PSPACE}. We also give exponential worst-case running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.Comment: 32 pages, 1 figur

    On the relation between the connection and the loop representation of quantum gravity

    Get PDF
    Using Penrose binor calculus for SU(2)SU(2) (SL(2,C)SL(2,C)) tensor expressions, a graphical method for the connection representation of Euclidean Quantum Gravity (real connection) is constructed. It is explicitly shown that: {\it (i)} the recently proposed scalar product in the loop-representation coincide with the Ashtekar-Lewandoski cylindrical measure in the space of connections; {\it (ii)} it is possible to establish a correspondence between the operators in the connection representation and those in the loop representation. The construction is based on embedded spin network, the Penrose graphical method of SU(2)SU(2) calculus, and the existence of a generalized measure on the space of connections modulo gauge transformations.Comment: 19 pages, ioplppt.sty and epsfig.st
    • …
    corecore