112 research outputs found

    Comparison of regional blood flow values measured by radioactive and fluorescent microspheres

    Get PDF
    Fluorescent microspheres (FM) have become an attractive alternative to radioactive microspheres (RM) for the measurement of regional blood flow (RBF). The aim of the present study was to investigate the comparability of both methods by measuring RBF with FM and RM. Eight anaesthetised pigs received simultaneous, left atrial injections of FM and RM with a diameter of 15 mum at six different time points. Blood reference samples were collected from the descending aorta. RBF was determined in tissue samples of the myocardium, spleen and kidneys of all 8 animals. After radioactivity of the tissue samples was determined, the samples were processed automatically for measuring fluorescence using a recently developed filter device (SPU). RBF was calculated with both the isotope and spectrometric data of both methods for each sample resulting in a total of 10,512 blood flow values. The comparison of the RBF values yielded high linear correlation (mean r(2) = 0.95 +/- 0.03 to 0.97 +/- 0.02) and excellent agreement (bias 5.4-6.7%, precision 9.9-16.5%) of both methods. Our results indicate the validity of MS and of the automated tissue processing technique by means of the SPU. Copyright (C) 2002 S. Karger AG, Basel

    Spinodal decomposition in alkali feldspar studied by atom probe tomography

    Get PDF
    We used atom probe tomography to complement electron microscopy for the investigation of spinodal decomposition in alkali feldspar. To this end, gem-quality alkali feldspar of intermediate composition with a mole fraction of aK=0.43 of the K end-member was prepared from Madagascar orthoclase by ion-exchange with (NaK)Cl molten salt. During subsequent annealing at 550∘C and close to ambient pressure the ion-exchanged orthoclase unmixed producing a coherent lamellar intergrowth of Na-rich and K-rich lamellae. The chemical separation was completed, and equilibrium Na–K partitioning between the different lamellae was attained within four days, which was followed by microstructural coarsening. After annealing for 4 days, the wavelength of the lamellar microstructure was ≈17nm and it increased to ≈30nm after annealing for 16 days. The observed equilibrium compositions of the Na-rich and K-rich lamellae are in reasonable agreement with an earlier experimental determination of the coherent solvus. The excess energy associated with compositional gradients at the lamellar interfaces was quantified from the initial wavelength of the lamellar microstructure and the lamellar compositions as obtained from atom probe tomography using the Cahn–Hilliard theory. The capability of atom probe tomography to deliver quantitative chemical compositions at nm resolution opens new perspectives for studying the early stages of exsolution. In particular, it helps to shed light on the phase relations in nm scaled coherent intergrowth

    Zircon microstructures record deformation history of shock- And tectonically-generated pseudotachylites: A case study from the vredefort impact structure, South Africa

    Full text link
    High-strain rate deformation can cause in situ melting of rocks, resulting in the formation of dark, micro- to nanocrystalline pseudotachylite veins. On Earth, pseudotachylite veins form during meteorite impacts, large landslides, and earthquakes. Within the Vredefort impact structure, both impact-generated and (pre-impact) tectonically-generated pseudotachylite veins have been described, but are challenging to distinguish. Here, we demonstrate a genetic distinction between two pseudotachylite veins from Vredefort by studying their petrography, degree of recrystallization and deformation, crosscutting relationships and the deformation microstructures in associated zircon. We conclude that Vein 1 is pre-impact and tectonically-generated, and Vein 2 is impact-generated. In agreement, zircon microstructures in Vein 1 contain planar deformation bands (PDBs), attributed to tectonic deformation, whereas zircon microstructures in Vein 2 reveal microtwin lamellae, indisputable evidence of shock metamorphism. Thus, deformation microstructures in zircon may provide a new criterion for distinguishing the genetic origin of pseudotachylite veins. Zircons that have been removed from their context (i.e., alluvial or detrital zircon, zircon from Lunar breccia) should be interpreted with caution in terms of their deformation history. For example, zircon with PDBs cannot reliably be used as a marker for shock deformation, because this feature has been shown to form in purely tectonic settings. © The Author(s) 2020.National Research Foundation, NRF: 106511, 111386, 98443This research is supported by the National Research Foundation (NRF) [grants number: 98443, 106511, and 111386, received by E.K]

    Detection, evaluation, and management of preoperative anaemia in the elective orthopaedic surgical patient: NATA guidelines

    Get PDF
    Previously undiagnosed anaemia is common in elective orthopaedic surgical patients and is associated with increased likelihood of blood transfusion and increased perioperative morbidity and mortality. A standardized approach for the detection, evaluation, and management of anaemia in this setting has been identified as an unmet medical need. A multidisciplinary panel of physicians was convened by the Network for Advancement of Transfusion Alternatives (NATA) with the aim of developing practice guidelines for the detection, evaluation, and management of preoperative anaemia in elective orthopaedic surgery. A systematic literature review and critical evaluation of the evidence was performed, and recommendations were formulated according to the method proposed by the Grades of Recommendation Assessment, Development and Evaluation (GRADE) Working Group. We recommend that elective orthopaedic surgical patients have a haemoglobin (Hb) level determination 28 days before the scheduled surgical procedure if possible (Grade 1C). We suggest that the patient's target Hb before elective surgery be within the normal range, according to the World Health Organization criteria (Grade 2C). We recommend further laboratory testing to evaluate anaemia for nutritional deficiencies, chronic renal insufficiency, and/or chronic inflammatory disease (Grade 1C). We recommend that nutritional deficiencies be treated (Grade 1C). We suggest that erythropoiesis-stimulating agents be used for anaemic patients in whom nutritional deficiencies have been ruled out, corrected, or both (Grade 2A). Anaemia should be viewed as a serious and treatable medical condition, rather than simply an abnormal laboratory value. Implementation of anaemia management in the elective orthopaedic surgery setting will improve patient outcome

    Causes of metabolic acidosis in canine hemorrhagic shock: role of unmeasured ions

    Get PDF
    Introduction: Metabolic acidosis during hemorrhagic shock is common and conventionally considered to be due to hyperlactatemia. There is increasing awareness, however, that other nonlactate, unmeasured anions contribute to this type of acidosis. Methods: Eleven anesthetized dogs were hemorrhaged to a mean arterial pressure of 45 mm Hg and were kept at this level until a metabolic oxygen debt of 120 mLO2/kg body weight had evolved. Blood pH, partial pressure of carbon dioxide, and concentrations of sodium, potassium, magnesium, calcium, chloride, lactate, albumin, and phosphate were measured at baseline, in shock, and during 3 hours post-therapy. Strong ion difference and the amount of weak plasma acid were calculated. To detect the presence of unmeasured anions, anion gap and strong ion gap were determined. Capillary electrophoresis was used to identify potential contributors to unmeasured anions. Results: During induction of shock, pH decreased significantly from 7.41 to 7.19. The transient increase in lactate concentration from 1.5 to 5.5 mEq/L during shock was not sufficient to explain the transient increases in anion gap (+11.0 mEq/L) and strong ion gap (+7.1 mEq/L), suggesting that substantial amounts of unmeasured anions must have been generated. Capillary electrophoresis revealed increases in serum concentration of acetate (2.2 mEq/L), citrate (2.2 mEq/L), alpha-ketoglutarate (35.3 microEq/L), fumarate (6.2 microEq/L), sulfate (0.1 mEq/L), and urate (55.9 microEq/L) after shock induction. Conclusion: Large amounts of unmeasured anions were generated after hemorrhage in this highly standardized model of hemorrhagic shock. Capillary electrophoresis suggested that the hitherto unmeasured anions citrate and acetate, but not sulfate, contributed significantly to the changes in strong ion gap associated with induction of shock

    In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites.

    Get PDF
    Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (Ni3C) nanocrystals in an amorphous carbon (a-C) matrix during thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy. At low annealing temperatures (300 °C) we observe isothermal Ni3C decomposition into face-centered-cubic Ni and amorphous carbon, however, without changes to the initial finely structured nanocomposite morphology. Only for higher temperatures (400-800 °C) Ni-catalyzed isothermal graphitization of the amorphous carbon matrix sets in, which we link to bulk-diffusion-mediated phase separation of the nanocomposite into coarser Ni and graphite grains. Upon natural cooling, only minimal precipitation of additional carbon from the Ni is observed, showing that even for highly carbon saturated systems precipitation upon cooling can be kinetically quenched. Our findings demonstrate that phase transformations of the filler and morphology modifications of the nanocomposite can be decoupled, which is advantageous from a manufacturing perspective. Our in situ study also identifies the high carbon content of the Ni filler crystallites at all stages of processing as the key hallmark feature of such metal-carbon nanocomposites that governs their entire thermal evolution. In a wider context, we also discuss our findings with regard to the much debated potential role of metastable Ni3C as a catalyst phase in graphene and carbon nanotube growth

    The influence of allogenic blood transfusion in patients having free-flap primary surgery for oral and oropharyngeal squamous cell carcinoma

    Get PDF
    The influence of perioperative blood transfusion in oral and oropharyngeal squamous cell carcinoma remains uncertain. It is believed that blood transfusion downregulates the immune system and may have an influence on cancer recurrence and survival. In all, 559 consecutive patients undergoing primary surgery for oral and oropharyngeal squamous cell carcinoma between 1992 and 2002 were included in this study. Known prognostic variables along with transfusion details were obtained from head and neck cancer and blood transfusion service databases, respectively. Adjusting for relevant prognostic factors in Cox regression, the hazard ratio for patients having 3 or more transfused units relative to those not transfused was 1.52 (95% confidence interval (CI) 0.93–2.47) for disease-specific and 1.52 (95% CI 1.05–2.22) for overall mortality. Blood transfusion of 3 or more units might confer a worse prognosis in patients undergoing primary surgery for oral and oropharyngeal squamous cell carcinoma. Therefore, every effort should be made to limit the amount of blood transfused to the minimum requirement

    Permian high-temperature metamorphism in the Western Alps (NW Italy)

    Get PDF
    During the late Palaeozoic, lithospheric thinning in part of the Alpine realm caused high-temperature low-to-medium pressure metamorphism and partial melting in the lower crust. Permian metamorphism and magmatism has extensively been recorded and dated in the Central, Eastern, and Southern Alps. However, Permian metamorphic ages in the Western Alps so far are constrained by very few and sparsely distributed data. The present study fills this gap. We present U/Pb ages of metamorphic zircon from several Adria-derived continental units now situated in the Western Alps, defining a range between 286 and 266 Ma. Trace element thermometry yields temperatures of 580-890°C from Ti-in-zircon and 630-850°C from Zr-in-rutile for Permian metamorphic rims. These temperature estimates, together with preserved mineral assemblages (garnet-prismatic sillimanite-biotite-plagioclase-quartz-K-feldspar-rutile), define pervasive upper-amphibolite to granulite facies conditions for Permian metamorphism. U/Pb ages from this study are similar to Permian ages reported for the Ivrea Zone in the Southern Alps and Austroalpine units in the Central and Eastern Alps. Regional comparison across the former Adriatic and European margin reveals a complex pattern of ages reported from late Palaeozoic magmatic and metamorphic rocks (and relics thereof): two late Variscan age groups (~330 and ~300 Ma) are followed seamlessly by a broad range of Permian ages (300-250 Ma). The former are associated with late-orogenic collapse; in samples from this study these are weakly represented. Clearly, dominant is the Permian group, which is related to crustal thinning, hinting to a possible initiation of continental rifting along a passive margin

    Detection, evaluation, and management of preoperative anaemia in the elective orthopaedic surgical patient: NATA guidelines

    Get PDF
    Previously undiagnosed anaemia is common in elective orthopaedic surgical patients and is associated with increased likelihood of blood transfusion and increased perioperative morbidity and mortality. A standardized approach for the detection, evaluation, and management of anaemia in this setting has been identified as an unmet medical need. A multidisciplinary panel of physicians was convened by the Network for Advancement of Transfusion Alternatives (NATA) with the aim of developing practice guidelines for the detection, evaluation, and management of preoperative anaemia in elective orthopaedic surgery. A systematic literature review and critical evaluation of the evidence was performed, and recommendations were formulated according to the method proposed by the Grades of Recommendation Assessment, Development and Evaluation (GRADE) Working Group. We recommend that elective orthopaedic surgical patients have a haemoglobin (Hb) level determination 28 days before the scheduled surgical procedure if possible (Grade 1C). We suggest that the patient's target Hb before elective surgery be within the normal range, according to the World Health Organization criteria (Grade 2C). We recommend further laboratory testing to evaluate anaemia for nutritional deficiencies, chronic renal insufficiency, and/or chronic inflammatory disease (Grade 1C). We recommend that nutritional deficiencies be treated (Grade 1C). We suggest that erythropoiesis-stimulating agents be used for anaemic patients in whom nutritional deficiencies have been ruled out, corrected, or both (Grade 2A). Anaemia should be viewed as a serious and treatable medical condition, rather than simply an abnormal laboratory value. Implementation of anaemia management in the elective orthopaedic surgery setting will improve patient outcomes
    corecore