286 research outputs found

    Non-collinear long-range magnetic ordering in HgCr2S4

    Full text link
    The low-temperature magnetic structure of \HG has been studied by high-resolution powder neutron diffraction. Long-range incommensurate magnetic order sets in at TN_N\sim22K with propagation vector \textbf{k}=(0,0,\sim0.18). On cooling below TN_N, the propagation vector increases and saturates at the commensurate value \textbf{k}=(0,0,0.25). The magnetic structure below TN_N consists of ferromagnetic layers in the \textit{ab}-plane stacked in a spiral arrangement along the \textit{c}-axis. Symmetry analysis using corepresentations theory reveals a point group symmetry in the ordered magnetic phase of 422 (D4_4), which is incompatible with macroscopic ferroelectricity. This finding indicates that the spontaneous electric polarization observed experimentally cannot be coupled to the magnetic order parameter

    Inelastic neutron scattering studies of the quantum frustrated magnet clinoatacamite, γ\gamma-Cu2(OD)3Cl, a proposed valence bond solid (VBS)

    Full text link
    The frustrated magnet clinoatacamite, γ\gamma-Cu2_2(OH)3_3Cl, is attracting a lot of interest after suggestions that at low temperature it forms an exotic quantum state termed a Valence Bond Solid (VBS) made from dimerised Cu2+^{2+} (S=1/2S=1/2) spins.\cite{Lee_clinoatacamite} Key to the arguments surrounding this proposal were suggestions that the kagom\'e planes in the magnetic pyrochlore lattice of clinoatacamite are only weakly coupled, causing the system to behave as a quasi-2-dimensional magnet. This was reasoned from the near 95^\circ angles made at the bridging oxygens that mediate exchange between the Cu ions that link the kagom\'e planes. Recent work pointed out that this exchange model is inappropriate for γ\gamma-Cu2_2(OH)3_3Cl, where the oxygen is present as a μ3\mu_3-OH.\cite{Wills_JPC} Further, it used symmetry calculations and neutron powder diffraction to show that the low temperature magnetic structure (T<6T<6 K) was canted and involved significant spin ordering on all the Cu2+^{2+} spins, which is incompatible with the interpretation of simultaneous VBS and N\'eel ordering. Correspondingly, clinoatacamite is best considered a distorted pyrochlore magnet. In this report we show detailed inelastic neutron scattering spectra and revisit the responses of this frustrated quantum magnet.Comment: Proceedings of The International Conference on Highly Frustrated Magnetism 2008 (HFM2008

    Detection of prion protein in the cerebrospinal fluid of elk (\u3ci\u3eCervus canadensis nelsoni\u3c/i\u3e) with chronic wasting disease using protein misfolding cyclic amplification

    Get PDF
    Cerebrospinal fluid (CSF) has been examined as a possible source for preclinical diagnosis of prion diseases in hamsters and sheep. The present report describes the detection of chronic wasting disease (CWD) in the CSF of elk and evaluates its usefulness as an antemortem test for CWD. The CSF from 6 captive and 31 free-ranging adult elk was collected at necropsy and evaluated for the presence of the abnormal isoform of the prion protein that has been associated with CWD (PrPCWD) via protein misfolding cyclic amplification. Additionally, the obex from each animal was examined by immunohistochemistry (IHC). Four out of 6 captive animals were CWD-positive and euthanized due to signs of terminal CWD. The remaining 2 were CWD negative. None of the 31 free-range animals showed overt signs of CWD, but 12 out of 31 tested positive for CWD by IHC. Protein misfolding cyclic amplification detected PrPCWD from 3 of the 4 captive animals showing clinical signs of CWD and none of the nonclinical animals that were CWD positive by IHC. The data suggests that CWD prions can be detected in the CSF of elk, but only relatively late in the course of the disease

    Stochastic Modelling Approach to the Incubation Time of Prionic Diseases

    Full text link
    Transmissible spongiform encephalopathies like the bovine spongiform encephalopathy (BSE) and the Creutzfeldt-Jakob disease (CJD) in humans are neurodegenerative diseases for which prions are the attributed pathogenic agents. A widely accepted theory assumes that prion replication is due to a direct interaction between the pathologic (PrPsc) form and the host encoded (PrPc) conformation, in a kind of an autocatalytic process. Here we show that the overall features of the incubation time of prion diseases are readily obtained if the prion reaction is described by a simple mean-field model. An analytical expression for the incubation time distribution then follows by associating the rate constant to a stochastic variable log normally distributed. The incubation time distribution is then also shown to be log normal and fits the observed BSE data very well. The basic ideas of the theoretical model are then incorporated in a cellular automata model. The computer simulation results yield the correct BSE incubation time distribution at low densities of the host encoded protein

    Interface alloying effects in the magnetic properties of Fe nanoislands capped with different materials

    Get PDF
    We show that Fe nanoislands capped with Al, Pd, and Pt protecting layers include an alloy at the interface with the capping layer, which explains the previously known capping layer dependence on the interparticle magnetic coupling. Vibrating sample magnetometry results, for instance, are evidencing a reduction in the magnetization measured under a magnetic field of 15 mT, which is larger in the case of the Al capping and which is due to the presence of a magnetically dead interface alloy. This reduction is also observed at the atomic level using x-ray magnetic circular dichroism measurements, showing a capping layer dependence of the Fe magnetic-moment reduction that is similar for the Pd and Pt capping, and stronger for the Al capping. The trend in the magnetic properties as a function of the capping layer is explained in the light of x-ray photoemission spectroscopy results that evidence the formation of alloys at the interface between the Fe nanoislands and the capping layers. The present results highlight the strong influence of interface alloying in systems of reduced dimensionality. In particular, it is shown that the magnetic properties are strongly affected at both the atomic and macroscopic level

    Spin dynamics in bulk MnNiGa and Mn1.4Pt0.9Pd0.1Sn investigated by muon spin relaxation

    Get PDF
    Martin Gleghorn Repository Coordinator Durham University | University Library and Collections | Bill Bryson Library | Stockton Road | Durham | DH1 3LY T: +44 (0)191 334 1584 [I'm currently working remotely and am not contactable by phone] E: [email protected] | www.durham.ac.uk/library The information in this e-mail and any attachments is confidential. It is intended solely for the addressee or addressees. If you are not the intended recipient please delete the message and any attachments and notify the sender of misdelivery. Any use or disclosure of the contents of either is unauthorised and may be unlawful. This e-mail has been created in the knowledge that Internet e-mail is not a 100% secure communications medium. We advise that you understand and observe this lack of security when e-mailing us. Although steps have been taken to ensure that this e-mail and any attachments are free from any virus, we advise that in keeping with good computing practice the recipient should ensure they are actually virus free. All liability for viruses is excluded to the fullest extent permitted by law

    X-Ray Analysis of Oxygen-induced Perpendicular Magnetic Anisotropy in Pt/Co/AlOx trilayer

    Get PDF
    X-ray spectroscopy measurements have been performed on a series of Pt/Co/AlOx trilayers to investigate the role of Co oxidation in the perpendicular magnetic anisotropy of the Co/AlOx interface. It is observed that high temperature annealing modifies the magnetic properties of the Co layer, inducing an enhancement of the perpendicular magnetic anisotropy. The microscopic structural properties are analyzed via X-ray Absorption Spectroscopy, X-ray Magnetic Circular Dichroism and X-ray Photoelectron Spectroscopy measurements. It is shown that annealing enhances the amount of interfacial oxide, which may be at the origin of a strong perpendicular magnetic anisotropy

    Microbial nitrogen cycling on the Greenland Ice Sheet

    Get PDF
    Nitrogen inputs and microbial nitrogen cycling were investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) during the main ablation season in summer 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes on Leverett Glacier, within 7.5 km of the ice sheet margin, suggested microbial uptake and ammonification respectively. Positive in situ acetylene assays indicated nitrogen fixation both in a debris-rich 100 m marginal zone and up to 5.7 km upslope on Leverett Glacier (with rates up to 16.3 μmoles C&lt;sub&gt;2&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt; m&lt;sup&gt;−2&lt;/sup&gt; day&lt;sup&gt;−1&lt;/sup&gt;). No positive acetylene assays were detected &gt; 5.7 km into the ablation zone of the ice sheet. Potential nitrogen fixation only occurred when concentrations of dissolved and sediment-bound inorganic nitrogen were undetectable. Estimates of nitrogen fluxes onto the transect suggest that nitrogen fixation is likely of minor importance to the overall nitrogen budget of Leverett Glacier and of negligible importance to the nitrogen budget on the main ice sheet itself. Nitrogen fixation is however potentially important as a source of nitrogen to microbial communities in the debris-rich marginal zone close to the terminus of the glacier, where nitrogen fixation may aid the colonization of subglacial and moraine-derived debris

    Bundling up carbon nanotubes through Wigner defects

    Full text link
    We show, using ab initio total energy density functional theory, that the so-called Wigner defects, an interstitial carbon atom right besides a vacancy, which are present in irradiated graphite can also exist in bundles of carbon nanotubes. Due to the geometrical structure of a nanotube, however, this defect has a rather low formation energy, lower than the vacancy itself, suggesting that it may be one of the most important defects that are created after electron or ion irradiation. Moreover, they form a strong link between the nanotubes in bundles, increasing their shear modulus by a sizeable amount, clearly indicating its importance for the mechanical properties of nanotube bundles.Comment: 5 pages and 4 figure
    corecore