Transmissible spongiform encephalopathies like the bovine spongiform
encephalopathy (BSE) and the Creutzfeldt-Jakob disease (CJD) in humans are
neurodegenerative diseases for which prions are the attributed pathogenic
agents. A widely accepted theory assumes that prion replication is due to a
direct interaction between the pathologic (PrPsc) form and the host encoded
(PrPc) conformation, in a kind of an autocatalytic process. Here we show that
the overall features of the incubation time of prion diseases are readily
obtained if the prion reaction is described by a simple mean-field model. An
analytical expression for the incubation time distribution then follows by
associating the rate constant to a stochastic variable log normally
distributed. The incubation time distribution is then also shown to be log
normal and fits the observed BSE data very well. The basic ideas of the
theoretical model are then incorporated in a cellular automata model. The
computer simulation results yield the correct BSE incubation time distribution
at low densities of the host encoded protein