We show, using ab initio total energy density functional theory, that the
so-called Wigner defects, an interstitial carbon atom right besides a vacancy,
which are present in irradiated graphite can also exist in bundles of carbon
nanotubes. Due to the geometrical structure of a nanotube, however, this defect
has a rather low formation energy, lower than the vacancy itself, suggesting
that it may be one of the most important defects that are created after
electron or ion irradiation. Moreover, they form a strong link between the
nanotubes in bundles, increasing their shear modulus by a sizeable amount,
clearly indicating its importance for the mechanical properties of nanotube
bundles.Comment: 5 pages and 4 figure