3,088 research outputs found

    Substorms on Mercury?

    Get PDF
    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there

    Enantioselective Cross Aldol Reactions of Aldehydes

    Get PDF
    https://scholarworks.moreheadstate.edu/student_scholarship_posters/1088/thumbnail.jp

    Evaluation of HCMM data for assessing soil moisture and water table depth

    Get PDF
    Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables

    Evaluation of HCMM data for assessing soil moisture and water table depth

    Get PDF
    Data were analyzed for variations in eastern South Dakota. Soil moisture in the 0-4 cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop (% cover ranging from 30% to 90%) with an r squared = 0.81. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the 1-mm soil temperature, r squared = 0.88. The corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the 0-4 cm soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. HCMM data were used to estimate the soil moisture for four dates with an r squared = 0.55 after correction for crop conditions. Location of shallow alluvial aquifers could be accomplished with HCMM predawn data. After correction of HCMM day data for vegetation differences, equations were developed for predicting water table depths within the aquifer (r=0.8)

    Looking for imprints of the first stellar generations in metal-poor bulge field stars

    Get PDF
    © 2016 ESO. Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] 1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims. The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ∼ 45 000) and high-signal-tonoise (S=N > 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods. High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results.We confirm that the analysed stars are moderately metal-poor (-1:04≤[Fe/H]≤-0:43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≤+0:2, and α-enhanced.We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na-O, Al-O, Al-Mg anti-correlations) were detected in our sample. The heavy elements Y, Zr, Ba, La, and Eu also exhibit oversolar abundances. Three out of the five stars analysed here show slightly enhanced [Y/Ba] ratios similar to those found in other metal-poor bulge globular clusters (NGC 6522 and M 62). Conclusions. This sample shows enhancement in the first-to-second peak abundance ratios of heavy elements, as well as dominantly s-process element excesses. This can be explained by different nucleosynthesis scenarios: (a) the main r-process plus extra mechanisms, such as the weak r-process; (b) mass transfer from asymptotic giant branch stars in binary systems; (c) an early generation of fast-rotating massive stars. Larger samples of moderately metal-poor bulge stars, with detailed chemical abundances, are needed to better constrain the source of dominantly s-process elements in the early Universe

    A remarkable recurrent nova in M 31: The predicted 2014 outburst in X-rays with Swift

    Get PDF
    The M 31 nova M31N 2008-12a was recently found to be a recurrent nova (RN) with a recurrence time of about 1 year. This is by far the fastest recurrence time scale of any known RNe. Our optical monitoring programme detected the predicted 2014 outburst of M31N 2008-12a in early October. We immediately initiated an X-ray/UV monitoring campaign with Swift to study the multiwavelength evolution of the outburst. We monitored M31N 2008-12a with daily Swift observations for 20 days after discovery, covering the entire supersoft X-ray source (SSS) phase. We detected SSS emission around day six after outburst. The SSS state lasted for approximately two weeks until about day 19. M31N 2008-12a was a bright X-ray source with a high blackbody temperature. The X-ray properties of this outburst were very similar to the 2013 eruption. Combined X-ray spectra show a fast rise and decline of the effective blackbody temperature. The short-term X-ray light curve showed strong, aperiodic variability which decreased significantly after about day 14. Overall, the X-ray properties of M31N 2008-12a are consistent with the average population properties of M 31 novae. The optical and X-ray light curves can be scaled uniformly to show similar time scales as those of the Galactic RNe U Sco or RS Oph. The SSS evolution time scales and effective temperatures are consistent with a high-mass WD. We predict the next outburst of M31N 2008-12a to occur in autumn 2015.Comment: 13 pages, 7 figures, 3 tables; accepted for publication in A&

    Soliton effects in dangling-bond wires on Si(001)

    Full text link
    Dangling bond wires on Si(001) are prototypical one dimensional wires, which are expected to show polaronic and solitonic effects. We present electronic structure calculations, using the tight binding model, of solitons in dangling-bond wires, and demonstrate that these defects are stable in even-length wires, although approximately 0.1 eV higher in energy than a perfect wire. We also note that in contrast to conjugated polymer systems, there are two types of soliton and that the type of soliton has strong effects on the energetics of the bandgap edges, with formation of intra-gap states between 0.1 eV and 0.2 eV from the band edges. These intra-gap states are localised on the atoms comprising the soliton.Comment: 6 pages, 3 figures, 3 tables, submitted to Phys. Rev.

    A phenomenological model for the X-ray spectrum of Nova V2491 Cygni

    Get PDF
    The X-ray flux of Nova V2491 Cyg reached a maximum some forty days after optical maximum. The X-ray spectrum at that time, obtained with the RGS of XMM-Newton, shows deep, blue-shifted absorption by ions of a wide range of ionization. We show that the deep absorption lines of the X-ray spectrum at maximum, and nine days later, are well described by the following phenomenological model with emission from a central blackbody and from a collisionally ionized plasma (CIE). The blackbody spectrum (BB) is absorbed by three main highly-ionized expanding shells; the CIE and BB are absorbed by cold circumstellar and interstellar matter that includes dust. The outflow density does not decrease monotonically with distance. The abundances of the shells indicate that they were ejected from an O-Ne white dwarf. We show that the variations on time scales of hours in the X-ray spectrum are caused by a combination of variation in the central source and in the column density of the ionized shells. Our phenomenological model gives the best description so far of the supersoft X-ray spectrum of nova V2491 Cyg, but underpredicts, by a large factor, the optical and ultraviolet flux. The X-ray part of the spectrum must originate from a very different layer in the expanding envelope, presumably much closer to the white dwarf than the layers responsible for the optical/ultraviolet spectrum. This is confirmed by absence of any correlation between the X-ray and UV/optical observed fluxes.Comment: 11 pages, 6 figure

    Stratifying quotient stacks and moduli stacks

    Full text link
    Recent results in geometric invariant theory (GIT) for non-reductive linear algebraic group actions allow us to stratify quotient stacks of the form [X/H], where X is a projective scheme and H is a linear algebraic group with internally graded unipotent radical acting linearly on X, in such a way that each stratum [S/H] has a geometric quotient S/H. This leads to stratifications of moduli stacks (for example, sheaves over a projective scheme) such that each stratum has a coarse moduli space.Comment: 25 pages, submitted to the Proceedings of the Abel Symposium 201
    • …
    corecore