192 research outputs found

    GaAs nanoscale membranes: prospects for seamless integration of III–Vs on silicon

    Get PDF
    The growth of compound semiconductors on silicon has been widely sought after for decades, but reliable methods for defect-free combination of these materials have remained elusive. Recently, interconnected GaAs nanoscale membranes have been used as templates for the scalable integration of nanowire networks on III-V substrates. Here, we demonstrate how GaAs nanoscale membranes can be seamlessly integrated on silicon by controlling the density of nuclei in the initial stages of growth. We also correlate the absence or presence of defects with the existence of a single or multiple nucleation regime for the single membranes. Certain defects exhibit well-differentiated spectroscopic features that we identify with cathodoluminescence and micro-photoluminescence techniques. Overall, this work presents a new approach for the seamless integration of compound semiconductors on silicon

    Magnetic-field-dependent zero-bias diffusive anomaly in Pb oxide-n-InAs structures: Coexistence of two- and three-dimensional states

    Full text link
    The results of experimental and theoretical studies of zero-bias anomaly (ZBA) in the Pb-oxide-n-InAs tunnel structures in magnetic field up to 6T are presented. A specific feature of the structures is a coexistence of the 2D and 3D states at the Fermi energy near the semiconductor surface. The dependence of the measured ZBA amplitude on the strength and orientation of the applied magnetic field is in agreement with the proposed theoretical model. According to this model, electrons tunnel into 2D states, and move diffusively in the 2D layer, whereas the main contribution to the screening comes from 3D electrons.Comment: 8 double-column pages, REVTeX, 9 eps figures embedded with epsf, published versio

    Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K

    Full text link
    Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of the quasi-two dimensional charge transfer salt β\beta"-(ET)4_4(H3_3O)[Fe(C2_2O4_4)3_3]\cdotC6_6H4_4Cl2_2 have been investigated in pulsed magnetic fields up to 54 T. The data reveal three basic frequencies Fa_a, Fb_b and Fba_{b - a}, which can be interpreted on the basis of three compensated closed orbits at low temperature. However a very weak thermal damping of the Fourier component Fb_b, with the highest amplitude, is evidenced for SdH spectra above about 6 K. As a result, magnetoresistance oscillations are observed at temperatures higher than 30 K. This feature, which is not observed for dHvA oscillations, is in line with quantum interference, pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009

    Realization of vertically aligned, ultra-high aspect ratio InAsSb nanowires on graphite

    Get PDF
    The monolithic integration of InAs1–xSbx semiconductor nanowires on graphitic substrates holds enormous promise for cost-effective, high-performance, and flexible devices in optoelectronics and high-speed electronics. However, the growth of InAs1–xSbx nanowires with high aspect ratio essential for device applications is extremely challenging due to Sb-induced suppression of axial growth and enhancement in radial growth. We report the realization of high quality, vertically aligned, nontapered and ultrahigh aspect ratio InAs1–xSbx nanowires with Sb composition (xSb(%)) up to ∼12% grown by indium-droplet assisted molecular beam epitaxy on graphite substrate. Low temperature photoluminescence measurements show that the InAs1–xSbx nanowires exhibit bright band-to-band related emission with a distinct redshift as a function of Sb composition providing further confirmation of successful Sb incorporation in as-grown nanowires. This study reveals that the graphite substrate is a more favorable platform for InAs1–xSbx nanowires that could lead to hybrid heterostructures possessing potential device applications in optoelectronics

    Template-Assisted Scalable Nanowire Networks

    Get PDF
    This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlTopological qubits based on Majorana Fermions have the potential to revolutionize the emerging field of quantum computing by making information processing significantly more robust to decoherence. Nanowires are a promising medium for hosting these kinds of qubits, though branched nanowires are needed to perform qubit manipulations. Here we report a gold-free templated growth of III-V nanowires by molecular beam epitaxy using an approach that enables patternable and highly regular branched nanowire arrays on a far greater scale than what has been reported thus far. Our approach relies on the lattice-mismatched growth of InAs on top of defect-free GaAs nanomembranes yielding laterally oriented, low-defect InAs and InGaAs nanowires whose shapes are determined by surface and strain energy minimization. By controlling nanomembrane width and growth time, we demonstrate the formation of compositionally graded nanowires with cross-sections less than 50 nm. Scaling the nanowires below 20 nm leads to the formation of homogeneous InGaAs nanowires, which exhibit phase-coherent, quasi-1D quantum transport as shown by magnetoconductance measurements. These results are an important advance toward scalable topological quantum computing
    corecore