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Abstract. High-order optical nonlinearity in molecular systems is of considerable interest, due to
the dynamical information it affords, the flexibility in geometry it offers, and due to its involvement

in the generation of even harmonics in isotropic media. Here, attention is focused on several
processes whose optical response is dominated by two electronic states and which involve the
coupling of up to six different optical modes. It is shown that transformation of the electric-
dipole interaction provides a convenient means for ascertaining the role of intramolecular charge
transfer on the high-order nonlinear optics of such systems. The transformation offers calculational
expediency and a direct route to expressions for nonlinear molecular polarizabilities. In particular,
the method identifies directly terms dependent on various powers of the displacement vector for
intramolecular charge transfer.

1. Introduction

The aim of thiswork is to expedite analysis of the involvementin high-order optical nonlinearity
of the permanent dipole moments in molecular systems, focusing attention on processes
involving up to six optical modes. Experimental studies of such high-order interactions [1-9]
have recently attracted great interest, mainly for the following reasons: (a) experiments of
this type offer dynamical information that is otherwise unavailable [10-16]; (b) they can
afford mechanisms for the generation of even harmonics in media that are macroscopically
isotropic [8, 17, 18]; (c) they offer considerable scope for the exploitation of resonances; and
(d), unlike second harmonic generation (SHG) or sum-frequency generation (SFG), they
present a flexibility of geometry. The latter characteristic can be usefully exploited for the
fullest characterization of the salient optical nonlinearity.

The signal of any parametric-photon process generated within a molecular medium
involves the properties of the radiation and the medium itself. In the electric-dipole
approximation, the latter is characterized by the appropriate nonlinear polarizability, which
depends on the detailed structure of the molecular electronic states, and also the transition
dipole moments connecting pairs of states—at least one of which is virtual. The product of
these transition moments connects the initial and final states, which, in a parametric process, are
identical (usually the ground state 0). The various routes between the initial and the final states
necessarily feature diagonal matrix elements, corresponding to permanent dipole moments, as
well as off-diagonal terms.
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The importance in many systems of the permanent dipole moments, though much
overlooked in the infancy of the subject, is now well known. The role of such moments
is particularly significant in non-centrosymmetric or polar molecules displaying a significant
degree of intramolecular charge transfer on electronic excitation—usually quantified in terms
of the vector difference between the permanent dipole moments of the excited state and the
ground state, traditionally denoted d§19-21]. Here, we are interested in systems with
an optical response dominated by just one electronic excited stpgnd, therefore, only
one vector displacement associated with intramolecular charge transfer. such systems are
often referred to as two-level systems. In this work the detailed role of permanent moments
in several optical processes of high-order nonlinearity is analysed by use of a transformed
interaction Hamiltonian, which considerably simplifies the calculations and directly isolates
terms dependent on the displacement vector for charge transfer.

2. Quantum electrodynamical formalism

The quantum system is formed by the molecules and the electromagnetic field (EM). It is
represented by a full quantum electrodynamical (QED) Hamiltonian, which can be described
interms of the Power—Zienau—Woolley formalism [22]. The specific formulation, whichis used
in the following sections is based on our previous work [23], where the interaction between the
EM field and the moleculedi:(€), is considered in the usual electric-dipole approximation.

To analyse am-photon process in a dilute molecular medium we make usdobrder
perturbation theory. The probability amplitude for the transition from the initial to the final
state of the system can be expressed as a sum of terms from each molecule or optically distinct
centre:

M
S=)_S (2.1)
£=1

where the first non-zero contribution for each molecule is the transition matrix element of the
time-evolution operatoi/;, in the interaction representation

Se = (fIUliYe = { foul Hne ) { (EQ— HO) " Hie(®)}" lisune-  (2.2)

By employing the completeness relation identity between the operators

{(EQ— H®) " Hn(®))

in equation (2.2), each individual probability amplitude can be expressed as a tensor product of
the radiation tensoy,, . ,,, and the nonlinear polarizability or high-order hyperpolarizability
tensorO,ﬁ%“:) (&) [24]. The former depends on the polarization vectors of incident photons,
and their complex conjugates for emitted photons, multiplied by other beam parameters, which
need not concern us here. On the other ha){d,f,’ifj) (&) depends on the differences in energy
between the initial state and each of the intermediate states, and on the electric-dipole transition
moments, which link the initial and final molecular states through the sequence of virtual
intermediate states. In a two-level system there &ré 8uch molecular state sequences. It
is the nonlinear polarizability)off,%“j) (&) that is our present concern. For condensed systems,
the optical response can then be cast in terms of the bulk suscepthility, , through [25]

Xoy.an = PLEY,, ® O, () (2.3)

o]1...002, Op+1...002,
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wherep is the number density anl:lggf‘f) ,, IS a Lorentz factor tensor of rank:gjiven by the

oS

outer tensor product of rank-2 tensors;
L = (3)" [ [, +26). (2.4)
i=1

Herex,, is the dielectric tensor for frequenay and$ is the Kronecker delta tensor.
For molecular systems, which have an optical response dominated by only two electronic
states, it has been shown that a transformed interaction Hamiltonian,

Hp (&) = —[1(§) — n®5)] - " (Re) (2.5)
is valid for deriving its optical response [19, 20, 26—31]. The subtraction in the square brackets
in equation (2.5) is the permanent dipole moment of the initial molecular state, in this case
the ground state. The first non-zero contribution to the probability amplitude can properly be
expressed in terms df; (&) as follows:

Se = (FIUi)e = (fadd Hiy @ {(EQ— HO) T Hpy@®)) Tliswde.  (2.6)
Use of the transformed interaction Hamiltonian has the effect of nullifying the permanent
dipole moment of the ground state and recasting the permanent dipole moment of the excited
state as the difference between the two [23]. Therefore, as in equation (2.2), the individual
probability amplitude can be written as the product of two tensgrs,, and 0./' (£),
where the prime indicates the recast form of the latter tensor in terfys 6 — 1.%°¢)].
Consequently, the number of molecular state sequences linking the initial and final molecular
states is substantially reduced frofit2, since all sequences that involve the permanent dipole
moment of the initial (ground) state give a null contribution to the nonlinear polarizability.

As will become evident, particular consideration must be given to cases of secular and non-
secular resonance. The latter occur when any molecular excited state differs from the initial
state by an amount corresponding to the net energy of a subset of the photons involved. The
degree of associated enhancement depends on the magnitude of the damping factors used to
extend the theory to dispersive frequency regions. Recent detailed studies [32] based on time-
reversal symmetry have confirmed that these damping factors should appear with a consistent
sign as tilde energieﬁiko, representing‘?,»ko = (E; — i) — Eo, whereT';, is the damping
factor of the excited statg (with energyE;,) and whereEy is the energy of the ground state.

In secular resonances, a particular subset of photons involved in the process has an overall null
energy exchange with the system. In the nonlinear polarizability contribution, for which the
intermediate molecular state is identical to the initial state, an apparently divergent response is
present; however, the divergent terms are in general present in groups which combine to give
a finite (even null) correct response, see, for example, [17].

Before applying the QED formalism to high-order processes, it is helpful to illustrate the
procedure by addressing the simple case of three-wave mixing. The analysis of such a process
exemplifies the equivalence of equations (2.2) and (2.6) fer3. In the traditional approach,
expression (2.2) for any three-photon process Rgso2sible molecular state sequences; the
exponent 2 takes account of the number of intermediate states involved, while the 2 in the base
shows that the system is represented by only two electronic states. Specifically, where the two
participating states are the ground state 0 and an uppemstéite molecular state sequences
can be classified by the numbgiof Ou (10) segments involved,;

p=0: 0000
p=2: OuuO, 0u00, 00O.

The distinction is significant because the corresponding terms in the nonlinear polarizability
entails precisely transition dipole moments. It is also necessary to consider all the possible
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time orderings that contribute, as represented by distinct Feynman diagrams (FD). In this case
there are at the most 3t 6 FD, depending on the number of beams that are involved (for
example, in second harmonic generation the degeneracy reduces the number of FD to 3). In
summary, the tensor characterizing a three-photon parametric process in a two-level system
has in general 4 6 = 24 different contributions.

To determine the nonlinear polarizability for this process, let us first consider the molecular
state sequence that involves only the ground state, 0000. Here, the hyperpolarizability tensor
as given by equation (2.2) has a contribution given by the six time orderings of this particular

sequenceT;
00,,00,,00

Z ( Mgl ) o
(12 \(2hwz + nihor)(nihor) /,
Wherezn{l’z,?,}()ﬂ is defined as the sum of all possible permutations of the three megdes (
wy andws), and

-1 for photon absorption
+1 for photon emission.
After some algebra, expression (2.7) can be written as

3 _—

MQOMQOMQOI: _ Zi:l@ihwi) _ } (2.8)
1R (n3hws) (n2hwz) (n1hwy)
As befits a parametric process, the energy conservation condition implies that the numerator of
expression (2.8) is zero, and therefore the susceptibility has no contribution from this sequence.
Of the remaining 18 terms there are six time orderings (FD) for each of the molecular
state sequences withh = 2. Using the sum notation introduced in expression (2.7) we can
write all these terms in a compact form:
Ou , uu ,,u0 Ou u0 00
( Mig Ly Ky + Ky a1y M2y

{i5g \(E + mhwz + mho1)(E +mhoy)  (E +nihoy + n2hwz) (n2ho;)

n =n(w;) =

I A ) (2.9)
(m3hws + nihw1) (E + nihwy) /.
whereE = E,o = E, — Eo. Equation (2.9) can be re-expressed as
Sy
(123 \(E +n2hwz + nihoy) (E +mho1)  (E + nihoy) (n2he?)
HIQZOM?BMM?P )
(n3hwsz + nhw1)(E +nihwy) /),
B ( e d, it
2(izy \(E +n2hwz + nihor) (E +nihws)
uQ oy S (nikieor) ) 2.10)
(n3hwz + nihw1) (E + nihw1) (n2hwz) /),

and the last term in equation (2.10) is again zero because of energy conservation. As a
result, equations (2.8) and (2.10) together show that for the three-photon process the nonlinear
polarizability tensor can be simply expressed as

Ou u0

d; ;
3 ( Piy Gty ) (2.11)
7{1,2,3} T

(E + nohwy + nihw1)(E + mhwr)

T This expression is proportional to the coefficiéi@?3 of [23].
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which is consistent with the form obtained directly by use of the transformed interaction

Hamiltonian in (2.6), as shown in [23]. It can be seen that the only state sequence that
contributes to the final form of the hyperpolarizability tensor, expression (2.11), is the one
which does not involve a 00 segmeni(@®), and in which therx segment is related to the

d = " — ;% vector. This rule can be followed in amyphoton process.

For cases involving higher numbers of photons the calculation of the hyperpolarizability
tensor, through equation (2.2), becomes increasingly difficult. The main complication when
dealing with systems involving > 3 photons is that the number of sequences and FDs
increases rapidly, giving a total of”2Vx!, all of which give net contribution t@?ﬂff@? &).

On the other hand, when the transformed interaction Hamiltonian (2.5) is used, the number
of sequences, which give a net contribution is reduced drastically, allowing the derivation of
expressions for the salient nonlinear polarizability tensors in a direct and simple manner. In
particular, this method facilitates the identification of terms involving a linear or higher-order
dependence od, the vector signifying the extent of intramolecular charge transfer on optical
excitation.

3. High-order processes in two-level systems

The equivalence between the result of implementing the two interaction Hamiltonians expedites
direct and concise formulation of the nonlinear polarizability tensors for four-, five- and six-
wave mixing processes. Hence instead of using"aft holecular sequences to determine the
detailed tensor structure, the following simple algorithm can be used to obtain the expressions
given by the transformed interaction Hamiltonian [23]:

Muu — El,m _ EOO =d EOO — 0 (31)

whilst the transition dipole moments remain unaltered. This algorithm therefore allows us to
discard any contribution associated with a molecular state sequence that involves the segment
00, as long as the segment is appropriately reinterpreted.

3.1. Four-wave mixing

In this process there ar€ 2= 8 molecular state sequences and=424 time orderings for
each sequence. As in the three-wave mixing process, these molecular state sequences can be
classified by the number of:Gsegments involvedy);

p =0: 00000
p =2 OuuuO, Ouu00, 00uu0, 04000, 00100, 0000
p =4 0uOuO.

By application of the algorithm, it transpires that only sequenees:0 and 0:0.0, which
have no permanent dipole moma_mﬁo involved, contribute to the nonlinear polarizability
tensor, which thereby assumes the following form:

Z < Mgudzgdizﬂ?lo
(E + nshws + n2hwy + nihw1) (E + nahwy + nihwr) (E + nihor)

x(1.2.3.4)
.\ Mgul/«ioﬂgtﬂﬁo )
(E + nzhws + nohwy + nihwy) (n2hwz + nihw1)(E + nihwr) ),

(3.2)

Inthe compact form given by (3.2) itis obvious that in the particular case wWiiere ]ﬁ“‘)] the
first term becomes dominant and the second can be neglected, and vice vﬁi$a(<fqg“°|.
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In the latter case, special consideration must be taken since secular resonance can occur if
two of the four photons involved in the process satisfy the relatiphw; + n;hw;) = 0, for

Vi, j such thati, j € {1, 2, 3,4}. In that case, the susceptibility tensor as written in (3.2)
presents singularities in the second term, which must be addressed carefully. It can also be
seen from equation (3.2) that, fdr= 0 (i.e. u* = u°), the hyperpolarizability tensor is a

null tensor only if the transition dipole moment is also zero. This characteristic is a feature of
any even-photon process [23].

3.1.1. Particular case. A particular case of four-wave mixing is a process involving two laser
beams, where the system absorbs from one beam two photons of fregyevtdle the second

beam of frequency’ acts as a pump producing stimulated emission. As a result, a signal is
produced with frequency” which, since the process is parametric, satisfies the condition
" = 2w — o'. In passing, we note that this process can offer a distinctive rate enhancement
whenthe frequency differente—o’| coincides with a Raman-active frequency of the medium.
However, to appropriately describe this widely studied case, known as coherent anti-Stokes
Raman scattering (CARS)), it is better to cast the theory in terms of a three-level system, for
which the expression given in (3.2) is no longer representative. We shall therefore limit our
study to the case whete — «'| is not a Raman-active frequency. Table 1 summarizes the
characteristics of the photons involved. Although in this table the propagation vectors are
included to fully specify the process, it is important to notice that for the calculation of the
nonlinear polarizability tensor, here or for amyphoton process related to dipolar coupling,

this data are superfluous. For the particular case under consideration it is readily seen that the
condition(n;hw; +1n;hw;) = 0is not satisfied for any pair j € {1, 2, 3, 4}, and consequently

there is no secular resonance.

Table 1. Photon characteristics for a particular four-wave mixing process (the angle bdiaeen
k' is arbitrary, and the labels 1" and)” refer to the polarizations of the beams). The frequencies
of the beams involved satisfy the energy conservation conditioa 2w — «’'.

Frequency Direction of propagation

Absorbed photons

(k, 1) vi=0 m=1 k
(k, )) wr=w =1 —k
Emitted photons

(K, \) wy3=0 gz=-1 ¥
(k”, }\//) w4 = w// na = -1 7’;/

An expression for the nonlinear susceptibility tensor can now be written as a sum of

five different terms with numeratorgud;d 1/, n%“didiuil®, pu*didyp®, pudid; iy and

1 1P 1. The result of combining the different contributions is

3 .
Oljkl(w”, -0, w, w)

= 01(13(),(1) (0" =, , w)
= (udd;dipf® + pd'd;diu°)[{2E (2E* + E%(8h%w® — 6h°ww)
+3%% 03w + A ww'® — 187 w%w'? — 2811_4w4)}{(E2 — (2hw — Ea)')z)
x (E? = (hw — h')?) (E? — 4(h)?) (E? — (hew)?)} ']
( O didiu© + ;Lj”d dlyf’o)[{ZE(ZE4 + E2( — ARP0? + GEzww’)
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—3*0iw — tww’® + 2%74a)4)}{(E2 — (ho — ﬁa)/)z)(E2 — (Ea))z)
x (E2 = (i )?) (E? — 4(hw)?)} ]

+u‘.)”dkd1u‘f0|: 4E(E? + 3h%w'? — 6h%ww’ — 2h%w?) ]
! J (E2 — (2hew — Ew’)z) (E2 — (ho — Ea)’)z) (E2 — (Ea)’)z)
+/¢L]?udidj M;10|: _ _4E _ ]

(E2 — (ho — ha)’)z) (E2 — (ha))z)

Ou , , u0, Ou u0|: 4E(E2(3]’760 + ]/_lw/) B anls + ngwfz + 4]1_460260/) :|
TG Wy — — = — — .
J (hw)(E? — (2ho — ha')?) (E? — (hw)?)(E2 — (h')?)
(3.3)

The symmetry of the tensor under the interchange of the sub-indifds ¢lue to the fact that
there are two photons in the process with identical frequency.
It is interesting to consider the case of electronic resonance, accommodated by inclusion
of damping;E = E, — Eo — E = (E, — Eg) — iT", wherel'/ 2% is the frequency linewidth
of the statex. Then, when any of the following conditions is satisfidd:~ hw, E ~ ho',
E ~ 2hw, E ~ 2ho — ho' Of E =~ ho — ho'; the system will exhibit resonance behaviour.
In each case, certain terms become dominant and the expresxﬂjﬁkgtw”; -, w, w) is
greatly simplified. In table 2 the different cases are tabulated, in each case the dominant terms
being inversely proportional to the damping fackor

Table 2. Dominant terms in resonance four-wave mixing.

Resonanceat  I'!

E~2hw—ho' 1=1 pddidip® uddidip® nddidp®;
O

E ~how —ho' =1 ;L?“djdku;‘o; ;L?”d_,'dm;fo; ,u?”d,-dku.}‘o;
19 didy %5 didy % 11 did

E ~ 2hw I=1  pddidepi® nddjdipni®; n9 didipit®;
1% didy i

E ~ho 1=1  pddep®; pdd;dp® n9d;dypf;
18 didypil®; i did it @ e g

E ~ho/ I=1 p9didi®; 3 didip®; pd dedy10;

O 0,,0 0
it g

3.2. Five-wave mixing
For this case there aré 2= 16 molecular state sequences and 120 (5!) FDs, which are again
classified in terms of the number of transition dipole moments
p =0: 000000
p =2 OuuuuO, Ouuu00, 00uuu0, Ouu000, 00100, 00Q:x0, 0000Q 002000, 00000,
00Q:0
p=4. OuuOuO, OuOuuO0, Ou0100, 00u0u0, Ou00uO.

It can be readily seen, by applying the algorithm given in (3.1), that the sequences, which give
a finite contribution to the nonlinear polarizability tensor ane @0, Oux0x0 and GOuxO0.
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The same result is obtained, after some quite intricate algebra, when the traditional interaction
Hamiltonian is used. By either method the following result is obtained:

( i diydiy iy 111

212345 \(E+ Zle niho;)(E + Z}ll nihow;)(E + Z,-2=1 nihw;)(E + nihiwr)
i 1

(E+ Z?:l nihw;)(E + Z?:l niho;)( Z,-Z=1 nihw;)(E + nihwy)

+

Ou ,,u0,,0u u0
i My Moy dip 1L,

7 R— —  Ba— — ) . (34
(E + Zi:l mhwi)( Zi=1 mhwi)(E + Zi=1 nihwi)(E +nihw1) /=
Since the process involves an odd number of photons, the nonlinear response is forbidden when
d = 0. In the particular case whefd| > \EMOL the main contribution to the tensor is given
by the first term. From equation (3.4) it can also be seen that singularities may be presented

by the second and third terms, for particular combinations of the frequencies involved. This
will occur whenever the photons involved satisfy

2 3
(Z n,ﬁw,) =0 and/or (Z niﬁw,) =o.
i=1 T i=1 T

An example where these divergences are present is studied in the following subsection.

+

3.2.1. Particular case. Here we focus on a particular five-wave mixing process studied

in previous works [5-7], in those cases without consideration of secularity or the features
associated with two-level response. This system involves two different lasers, one of which
is used to generate two counterpropagating modes. A summary of the characteristics of each
beam is given in table 3 and a more extensive description of the process can be found in [5-7].

Table 3. Photon characteristics for a particular five-wave mixing process (the angle bekween

andk’ is arbitrary, and the labels, 1/, X and” refer to the polarizations of the beams). The
frequencies of the beams involved satisfy the energy conservation conditienw + «'.

Frequency Direction of propagation

Absorbed photons

(k, %) m=0 m=1 k

(—k, 1) wr=w =1 k

(K, ) 3= n3=1 %

Emitted photons

(k, %) w4 =w ng=—1 —k

k", A" ws=ao" nps=-1 K

For this particular five-wave process, the second term of the polarizability tensor will
present secular resonances when

2
(Z nﬁw,) = n12hwy2 + nahwy (3.5
i=1 T
while for the third term this problem will arise when

3
(Z niﬁa)i> = n1,2hw1 2 + n3hws + nshws. (3.6)
i=1 ™



Permanent dipole moments in high-order optical nonlinearity 2285

There are 12 terms for each type of singularity. Hence, the nonlinear polarizability can be
written as a sum of two terms:

0¥ =0% +0¥

non-sec sec

(3.7)

The first term of equation (3.4) contributes only to the non-secular@é?.l;,secin (3.7), while
the second and third terms of (3.4) contribute to both secular and non-secular terms in (3.7).
Then, Orgg)n—secis

3 ( i diydiy 1Y )
ciizzas \(E+ X0 niho) (E+ Y0 nihoy) (E + Y2 nihay)(E + nihan) /-
- ( iy i Y
non-sec (E + Z?:l 771%601‘) (E + Z[a:l mﬁwi)( Z,’2=1 mﬁwi)(E + Ulﬁwl)

7{1,2,3,4,5)
Ou,,u0,,0 0
Misuulﬁ Mi3“ izﬂﬁ ) (3.8)
(E + Zf-l:l niho;)( Z?:l nihw;)(E + Z?:l nihw;)(E + nihwy) /)

To address the singularities presentié), it is expedient to introduce a slight variation
of the frequencies of the anti-parallel beams [17]:

+

w=w—>w+d wr=w—>w—1=_
(3.9

w3=0 — o wa=w— W ws=0" - .

When the limit of§ — 0 is taken, a finite combination of the terms leading to singularities is
effected, and a well ordered result for the five-wave mixing process of interestis recovered. All
48 terms are tackled in a similar manner. For instance, let us consider the FD that corresponds
to the time orderingr{1, 2, 3, 4,5} — (w2, ws, ws, w1, w4) and sum with its counterpart,
wherew; andw, are interchanged,

(E — hw) (=h8) " ME — ho — h8 — het) M (E — hwo — h8) ™~ pud il i i
+(E —hw) *(h8) " NE — how + ks — he') " NE — ho +h8) ™t
X e i i . (3.10)
Factorizing and taking the limit &f — 0, we can rewrite the expression as
Mg”u?loug”di3u?zo(E —hw —ho')"YE — ﬁw)_z(—Z){(E —how —ho) 1+ (E — Fa))_l}
(3.11)

and the apparent singularity is removed. Proceeding in this way, the final and complete result
for the secular part of the nonlinear susceptibility is

08 = (=D (1 diy 2 1 + p di, piud i)
x{(E —ho — o) NE — ho') Y (E — hw) ™
X[(E —hw — 7)™t + (E — ) + (E — hiw) ]
+(E —hw —he') ™ HE — he) Y E + o)™t
x[(E —ho —he) ™t + (E — het) ™t + (E + ho) ']
+(E +ho +he') " YE +he') ™ NE — ho) ™t
X[(E +hw+ho) ™+ (E +he) t + (E — o) ]
+(E +ho +ho') Y (E +he!) " NE +ho) ™t
X[(E +hw+ho) ™ + (E +he) "t + (E +hw) "]}
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#(=2) (e iy 10 12 101°)

x{(E + o) " NE — ho) ?[(E +ho') ™t + 2(E — ho')?]

+(E +ho) " YWE — hw) Y (E + hw) ™t

X[(E + 7)™t + (E — hw) ™ + (E + ho) ]

+(E —he') N E —how) YE +ho) ™t

X [(E —ho) Y+ (E —ho) 1+ (E+ 710))_1]

+(E —ho') Y (E +ho) ?[(E — ha') ™" + 2(E + ho) ]}

+(—2) (u diy 2 1)

x{(E —ho — o) ME —ho) ?[(E —ho —he') "t + 2(E — hw) ]
+(E —hw — he) YE +ho) YE —ho) ™t

x[(E —ho — 7)™ + (E + hw) ™ + (E — hw) ']

+(E +how + ho) " YNE + ho) Y E — hw) ™t

X[(E +hw+ho) ™+ (E +ho) 't + (E — ho) ]

+(E +ho +ho') HE +hw) ?[(E +ho +he') '+ 2(E +hw) ]}, (3.12)

The sum of equations (3.8) and (3.12) completely determines the nonlinear response for
this particular process. The degeneracy in frequency of two of the photons involved in the
processw; = wy, causes the nonlinear polarizability tensor to present an index symmetry,
0 s = O, 1 i.io- This allows one to express the tensor as a sum of 11 terms. There is no
other symmetry present, so the expression for the sum is highly complicated. However, it is
greatly simplified whem’ = w, in which case the five-wave process represents a higher-order

correction to SHG. Then, the tensor reduces to a sum of six terms:

",
0i1i2i3i4i5(a) D —w, ®, ®, ®)
—_ Nn® .
= O(ilizis)iAis(w P —w, W, ®, ®)
1
=12

(E2 — Ezwz) (E2 — 4520)2)
X [Mﬁ”dgdudis/ﬁzo + M?z“d,-ldudisu?f + uﬁ”dizdmdisu?f + Mg"dildizdigll?so]
(E2 +H20?)

(E2 — hw?)(E2 — 4h°w?)(E? — 97%w?)

X [Mgudizdigdisﬂzo + M?Z”d,-ldisdisuﬁo + Mg”dildizdisuﬁo]
(E? + 117%w?)

(E2 — Eza)z) (E2 — 4712a)2) (E2 — 9520)2)
X [M,('Jludizdisduﬂ?so + Mgudildigdull?so + Mgudildizdull?so]
E?(—E*+ E?R?w? + 4h* )
(E? — 20?)*(E? — 4720?)”

u0, u0, u0,  u0 u0, u0, u0, ul u0, u0, u0,  u0
X[diluiz /'l'i3 Mi4Mi5 +di2“i1 Mig Mi4 Mis +di3l'Li1 Miz Mi;;“is]

+12

+12

+72
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Table 4. Dominant terms in resonance five-wave mixing.

Resonance at '/

~ T _ . ,u0,,u0,,u0,,u0. 5 u0, u0, u0, u0. 3 , u0,u0, u0, ul.
E~how 1=3 d’l'u“iz Mig Wiy Hig s dlzl‘Lil Hig Ky g dt3l"','l iy iy Mg
. ,,u0,,u0, u0,, u0
dz4,u,'1 Miy Mg K

[=1 digui wig g s 1 digdiadig s 15y diy il 173
WO iy iy i 105 02 diy digig s 10 i gy 1D,
10 iy dig i 14105 1 diy iy iy 110 1 iy i 1112
Mgudildiadisﬂﬁo; M%ldildizdi5M§20
E~dio =2 dyufuOius dnfn i diont o,
=1 u0iydydig it 1% diy iyt 1Oy
Mg{dildizdisu?so; M%‘dizdisdu“?so; “?zudild’éd"“M?SO;
M?:dildigdmﬂ?soi M%ldizdigdisﬂao; /lgudildiadisﬂﬁo;
M?;dildizdisﬂﬂo
E ~ 3hw =1 /’Lz(')ludizdigdmu?so; M%‘dildiadu“?so; “?:d"ld"zd"“ﬂ?‘SO;
100 diydisdig s 102 iy i 10 iy ity
A N A

1

(E2 - Eza)z) (E2 - 9l_12w2)
+24 (—3E4 + 16E2h%w? + 3h_4w4)
T (E? — R2?)’(E2 — 9R%a?)

From this expression it is easy to establish the importance of the different terms in cases of
non-secular resonance (~ hw, E ~ 2hw or E ~ 3hw). Intable 4 a summary of the different
cases is given. For the first two casés<{ hw, E ~ 2hw) the main contribution is given by
those terms proportional ©—2 andI"~?, respectively, while in the third cas& (~ 3hw) all
terms have a directly inverse proportionality to the damping factor.

For those molecular systems, in which the transition dipole mom&nand the vector
d differs substantially in magnitude, some of the terms become more relevant than others. If
}uo”| < |d|, then the most relevant terms are those in the first three terms in equation (3.13).

On the other hand, itfﬁo”\ > |d|, only the last four terms are relevant.

w0, u0, u0,  u0
di4l’l'i1 'uiz /"Li3 I"Lis

+(=72)

it 0. (3.13)

3.3. Six-wave mixing

For a six-wave mixing process the number of terms involved is 8 = 23 040, whilst the

number of sequences involved & Zhese can be grouped as follows:

p =0: 0000000

p=2. OuuuuuO, Ouuuu00, O0uuuu0, Ouuu000, 00uu100, 00CQuuu0, Our000Q 00«1 000,
000Q:200, 000Q:10, 00000Q 00:000Q 000000, 000Q:00, 000000

p =4 OuuuOuO, OuOuuuO, OuuOuuO, OuuOu00, Ouu00u0, Ou00uw0, 00uO0uu0, Ouluu00,
00w 0u0, Ou0u000, 0100100, 010000, 000100, 00000, 00Q:0u0

p =06 0OuOuOuO.

The final expression, which is equivalent to that obtained using the transformed interaction
Hamiltonian, entails five sequencesiuuu0, OuuuOuO, OuOuuu0, OuuOuu0 and G0u0u0,
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as given by the application of the algorithm (3.1). Thus, the nonlinear polarizability tensor for
the six-wave process is written as

5 -1 4 -1
Z ((/Lgudisdudigdizﬂ?lo) (E + Z T)[}_l(,()i) (E + Z nﬁw,-)
7{1,2,3.4,5,6) i—1 i=1
3 -1 2 -1
x (E +> niﬁwi) <E +>° mﬁwi> (E +nihor) ™
i=1 i=1
5 -1 4 -1
+(u2 i O 11?) (E > mhwi) (E > mhwz’)
i=1 i=1
3 -1 2 -1
x (E +> nif_lwi) <Z mﬁw,) (E + mhwp) ™
i=1 i=1
5
+ (e Wi di, dzzu?1°)<E +> niho ) (thwz)
i=1
3 -1 2 -1
x (E +> niﬁwi> (E +> nﬁtw) (E + mhowp) ™
i=1 i=1
5 “1 4 -1
(¥ dig i di, 1) (E +>° n,-hwi) (E +>° mha)i)
i=1 i=1
3 -1 2 -1
X ( Z niﬁwi> (E + Z niﬁwi> (E + nhowp) ™"
i=1 i=1
5 1, 4 -1
i i 1) <E ) mh@) (Z mhwi)
i=1 i=1
3 -1 2 -1
X (E + Z niﬁa),-) (Z niﬁa)[) (E + nlﬁwl)_1> . (3.14)
i=1 i=1

T
Since this process involves an even number of photons, evai for0 the tensor remains
non-zero and is identical to the last term in equation (3.14). On the other hadgid;sif |,u”0|,
then the result can be represented by the first term alone. Again, it is important to notice that
for certain six-wave mixing processes secular resonance might be presented when one or more
of the following identities is satisfied:

2 3 4
<Z nfﬁwi) =0 (Z n,ﬁw,») =0 and/or <Z niﬁw,-) =0
i=1 T i=1 b4 i=1 T

In any of these cases there will be singularities in some of the last four terms of equation (3.14).
For example, when studying SHG in a six-wave mixing process, there are singularities of the
second kind. We will study this case in the following subsection.

3.3.1. Particular case. As observed above, with a larger number of photons involved in the
process, explicit expression of the nonlinear polarizability tensor produces a rapidly increasing
number of terms, which makes it difficult to handle. For cases where the beams involved
are characterized by some kind of symmetry this number nevertheless reduces drastically.
This is well illustrated by the case of the six-wave mixing process, which effects second
harmonic generation in centrosymmetric media [8, 10, 11]. The nonlinearity which mediates
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Table 5. Photon characteristics for a particular six-wave mixing process (the angle bekween
andk’ is arbitrary, and the labels, A, " and1” refer to the polarizations of the beams). The
frequencies of the beams involved satisfy the energy conservation conditien2e.

Frequency Direction of propagation

Absorbed photons

(k, 1) wi=0 m=1 k
(k, 1) =0 m=1 k
(—k, ") ws=w =1 -k
(=k, ) w4 =w na=1 —k
Emitted photons

(k//, )L//) w5 = " N5 = -1 ”%/
(—k”, )\///) wg = o N6 = -1 _I::/

this six-wave interaction can be representeddd3 (v”; —”, w, w, ®, w), the parameters
within parentheses successively represent the harmonic signal photon, the harmonic pump
photon, the two photons of one fundamental frequency input and, finally, the two photons of
the other (counterpropagating) fundamental input. The beam parameters are fully characterized
in table 5.

The first simplification results from recognition that, since the energy denominators of
the tensor are not dependent on the beam direction, the four fundamental frequency photons
are interchangeable and so too are the two harmonic photons. This reduces the number of
different energy denominators to a set of 15, the same as those which arise in connection with
a much simpler six-wave interaction described previously [10]. Using expression (3.14) for a
general six-photon process, the response tensor can be written as a sum of five different terms,
each of which involves all the non-equivalent beam permutations. As in the particular case of
the five-wave mixing process examined in section 3.2.1, there are some terms involved which
have a secular resonance present. This problem has already been solved [17] and we will apply
these results for the particular case of a two-level molecular system. Df®mran be written
as follows, dividing the contributions from the secular and non-secular parts:

-1

5 -1 4 -1 3
((M%ldisdmdisdizﬂ?lo) (E + Z niﬁwi) <E + Z niﬁa),) (E + Z n,-i_za),-)
i=1 i=1 i=1
2 -1
X (E +> n,-ﬁw,-) (E +nihay) ™
i=1
5 -1, 4
N CATATATATATN <E + mhwi) ( 2 ”ihwf>
i=1 i=1
3 -1, 2 -1
X (E + Z nﬁcw) <Z niﬁa)i) (E + nhop) ™
i=1 i=1
5 -1 4 -1
(i t®) (£ 4 Yo ) (543 nn)
i i=1
3 -1, 2 -1
X (E + Z niﬁa)i> <Z niﬁa)i) (E +nihwy) ™
i=1 i

7{1,2,3,4,5,6}

-1
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5 -1, 4
s utadopi?) (£ L) (3w )
i=1 i=1
3 -1 2 -1
X (E + Z niﬁwl‘> <E + Z ﬂiﬁwi) (E+ 771%601)1>
i=1 i=1 T

5 -1 4 -1

+ Z ((u?e“disui-‘fug“dizu?f) <E + Z Uihwi) (E + Z Th‘hwi>
i=1 i=

non-secular
7{1,2,3,4,5,6}

-1

-1

3 -1 2
X ( Z Thﬁwl) (E + Z ﬂiﬁwi) (E + nlﬁwl)_]')
i=1 i=1 T

(p)
+ Z Osec(i,jk)(z,mn) (3.15)

secular
r=1..9

where the sum labelled as ‘non-secular{l, 2, 3,4, 5, 6}’ is subject to the condition
(Z?zl ﬂiﬁwi)n # 0. Expression (3.15) shows that, in this case, there is only one term

which has secular resonances present. The cases ‘(\/@3@1 mﬁa)i)]r = ho' — ho — ho

or (X3 nihw;), = hw" — hw — ho are contained in the last line of equation (3.15). The
explicit expressions for the nine different contributions, given in table 6, are equivalent to those
in [17], but are expressed more concisely here.

Table 6. Secular terms for six-wave SHG.

Oleti jtotmm = —(12dj 1 dyy i 2(E — heo) ™ (E — 2he) ™ H(E — ho) ™ + (E — 2h) ™)

O%r iyt = — (13 di O dyy i) (E — o) (E — 2h) ™M (E +Fio) ™
x{2(E —hw) 1+ (E — 2hw) 1 + (E + how) ™1}

O i ity = — (1% di e dy 110 (E = Tiew)"H(E — 2hw)"H(E + 2hw)"L(E +Trw) ™2
x{(E —TFiw) 1+ (E — 2hw)™ Y + (E + 2hw) ™1 + (E + Tiw) ™1}

Oletii.itotmmy = — (1% di 1t tdy i) (E — o) H(E + 2heo) " H(E + hiw) 2
x{(E —TFw) ™t + (E + 2hw)~ L + 2(E +Fw) ™1}

Ot = — (M dentutdy 1f2(E + 2h0)™HE +ho) ™H(E + 2h0) ™+ (E + o) ™Y
® 4 ~ ~ 1,5 _
Ose)(:(i,ik)(l,lrzn) = Oée)(i(k,ji)(n,ml) = _Eﬂgudiﬂzol‘%“dnﬂ?o){(lf + 2hw)(E — Tw))"HE +ho)~?

x{(E + 2hw) ™1 + (E — how) ™1 + 2(E + hw) ™1}
Oéz)c(i,jk)(/,mn) = Oéz)c(k,ij)(m,nl) = —(u{dj 0l dy i) (E + 2hw) "H(E + hw) "H(E — heo) HE — 2hw) !
X{(E + 2hw)™ L + (E + how) L + (E — ho) L + (E — 2hw)™ 1)

®) @3] N DR
Osec(f,jk)(l,mn) = Osecgj.ik)(m.ln) = _f/*?“ juii"uﬁf‘dmz")(E —hw)"4(E + ho) H(E — 2ho) ™t
x{2(E —hw) 1+ (E +hw) 1+ (E — 2hw)~1}
0%t itotmmy = — (13 di 0% dy a0 2(E — o) 2(E + Frw) 2((E — i) ™2 + (E +hiw) ™Y

Because this particular case is highly degenerate, the terms of the ten-
sor can be grouped by the type of numerator, of which only six arise:
T T T T T 1 1o T T 0 Y O Ty T Ty O Tyt YT T T
wpdy S dpdydy, gt dyddydy andd,d, n% n% dyd;. Exploiting this feature to gather
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salient terms, the following final expression for the nonlinear polarizability is obtained:

E
(E? — 1?w?)(E2 — 4h2w?) (E? — 97%w?
E{1247808 + 333°wPE? — 1561 0w E4 — 197%w?E® + 6E8)
(E? - an)z)?'(E2 - 452602)3(E2 — M2w?)
X g S uiddy
E(3E? — 11h%0?)

(E? — W?w?)’(E2 — 9R%w?)
{—6E® + 106E°w? — 555E4w* + 339E20° + 11960° ]

) /’Lguﬂgllﬂsfu“?‘uﬂ?fuﬂgfu

0% " -0, v, », w, w) = 180

+(=72)

+(—24)

dndy ' 1§ G

+96 Mobtd MO”ILO”MO-”d ,

(E? — 20?)*(E? — 4h?w?)?(E2 — OF%?) (B2 — 160%02) " /T
+-24 (227 = 5L a? + 12870 0, 1O d
E(E2 — 2a?) (E2 — 4h%w?) (E? — 9R2a?) (E2 — 167202) " "7 Y

1

+6 Wy dedpdsd
(E)(E? — W2a?) (E2 — aR2e?) " 10 1140

+18 (2E2 - 3%w?) Ay 1% d d (3.16)
E(E? — 20?)(E2 — 4h2w?) (E2 — 9R2a?) 1 1 04 '

From this expression it is noticed that® is proportional to EZ — Eza)z)_l and, therefore, if

the molecular system is near to single-photon resonaneejiw, all the terms are enhanced.
However, the main resonance contributions are given by the second, third and fourth terms,
which are proportional t&' —. Enhancement also occurs fBr~ 2hw, E ~ 3hw, E ~ 4ho.

In the first (two-photon) case, the main contribution to the nonlinear polarizability is given by
i i 1 uGdydy. In the other two cases (three- and four-photon resonance) all resonant
terms are inversely proportional i Table 7 summarizes the terms which are important in
each case.

Table 7. Dominant terms in resonance six-wave mixing.

Resonance at '/

E ~Tho 1=3  pufupul nSdedy; dpdppnd n nG s w dng wd wGdy

P=1 G w nd nl witdnnfdydpdy; i uittdpdydydy;
dpdy, /L_(}” M?fudfdf

E ~ 2how =3 ug“ug“u?p“u?”dfdf
1=2  pdpp$uf ngdys
1=1 Mguﬂguﬂ%ﬂ(j)}‘ﬂ%ﬂ%; ,ugudhﬂ(}udfdfdf; Mguﬂgudfdfdfdf;

dhdhm;.m?."dfdf
E ~ 3ho =1 pu w9l ud w1 dydy; dpdpny g w19
i dnp Y 1Y uSdy; pft dup Y dydydy; dydnp nS dsdy

E ~ 4o 1=1  pdnpSun% 1 ds; pft dypSdsdsds
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4. Discussion

It has been shown in the previous section that by use of the transformed interaction Hamiltonian,
simpler expressions can be found for high orders of the polarizability tensor. These expressions
show the dependence of the optical response on the difference between the permanent dipole
moment of the excited molecular statand the ground molecular state 0, characterizing the
associated intramolecular transfer of charge. In general, higher-order processes still present
considerable complexity, which is nonetheless greatly reduced for those cases with a high
degree of degeneracy amongst the optical modes involved. It has also been shown that the
simplest way to obtain the expression for the polarizability tensor given by the transformed
Hamiltonian is by the application of the algorithm given in (3.1). This can be achieved for any
parametrio:-photon process as proven in [23].

The broad features of the dependence of the nonlinear polarizability tensor on the
permanent dipole moments and the transition dipole moments can be addressed by introducing

a factor¢ defined asp = |d|\ﬁ”°|_1, which immediately characterizes the contributions

of the different terms in the response tensor. Firstly, let us analyse the simple expression,
equation (3.2), relating to the four-wave mixing. Kprs> 1, the first term of equation (3.2)
becomes dominant while, ¢ « 1, the second term dominates. It is important to notice that
the difference in magnitude between the two terms is of the order0find consequently

it is enough to havep ~ 3, for the first term to become one order of magnitude greater
than the second, frequency factors permitting. In the gase 0O, i.e. where no charge
transfer is associated with the optical transitiors0u, then the nonlinear response remains
finite, because, as in any even-photon process, the nonlinear polarizability has a term which
is independent of permanent dipole moments. Therefore, for the process under consideration,
the nature of the molecular medium determines whether either the first or the second term is
dominant.

In a similar manner, the expression for the nonlinear polarizability tensor for five-wave
mixing can be written and analysed straightforwardly. The general expression, equation (3.4),
shows the dependence of the polarizability on the dipole moments. The first term differs from
the rest byy?, and will therefore become dominant fgr> 3. Since this is an odd-photon
process, it is forbidden fap = 0 (all terms are dependent @). This is a process which very
much depends on a strong charge transfer character to-the @ansition. In the specific case
of the five-wave process which represents a higher-order correction to SHG, subsection 3.2.1,
it is seen that not all non-secular enhancements are of the same order of magnitude. For
example, in the single-photon resonancé&at hw, terms which are linearly dependent on
the displacement vectat are also proportional t6 2. Similar remarks can be made about
the six-wave mixing process, where the five terms can be reduced to just one in the special
limits of ¢ > 1 or¢ « 1. This even-photon process will still generate a signal i 0.

In general, for each nonlinear polarizability contribution, the higher the order of the
inverse proportionality to the linewidth-related factor the greater the magnitude of the
corresponding term (since other denominator factors will in general relate to larger electronic
energy differences). The significance of the various forms of dependence on the damping can,
for example, be illustrated by the case of a two-photon resonant five-wave mixing process.
Here, the key contributions to the salient molecular tensor, identified in table 4, reveal that
the!/ = 2 contributions carry a lower-order dependencedaihan thel = 1 terms. Thus,
unlessp has a value significantly greater than unity, the 2 terms will certainly dominate.

If ¢ is much less than unity, the tdn= 1 terms can effectively be disregarded. Such
factors will therefore be important determinants of five-wave optical nonlinearity in molecular
systems.
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It is clear that the combined effects of resonance conditions and the interplay of
transition/charge transfer dipole moments exercises a considerable effect on the relevance
of the various contributions to the nonlinear optical response. The simple expressions we
have derived for high-order processes can be used to determine the appropriate characteristics
of the nonlinear optical material, which would be necessary to expedite a specific process.
Applications to other parametric processes, where there is a particular interestin the dependence
on the permanent dipole moments and charge transfer characteristics, can be pursued following
the same approach. Although we have limited our interest to those systems with an optical
response governed by only two electronic states, an extension to multi-level systems is already
being developed.
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