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Abstract. High-order optical nonlinearity in molecular systems is of considerable interest, due to
the dynamical information it affords, the flexibility in geometry it offers, and due to its involvement
in the generation of even harmonics in isotropic media. Here, attention is focused on several
processes whose optical response is dominated by two electronic states and which involve the
coupling of up to six different optical modes. It is shown that transformation of the electric-
dipole interaction provides a convenient means for ascertaining the role of intramolecular charge
transfer on the high-order nonlinear optics of such systems. The transformation offers calculational
expediency and a direct route to expressions for nonlinear molecular polarizabilities. In particular,
the method identifies directly terms dependent on various powers of the displacement vector for
intramolecular charge transfer.

1. Introduction

The aim of this work is to expedite analysis of the involvement in high-order optical nonlinearity
of the permanent dipole moments in molecular systems, focusing attention on processes
involving up to six optical modes. Experimental studies of such high-order interactions [1–9]
have recently attracted great interest, mainly for the following reasons: (a) experiments of
this type offer dynamical information that is otherwise unavailable [10–16]; (b) they can
afford mechanisms for the generation of even harmonics in media that are macroscopically
isotropic [8, 17, 18]; (c) they offer considerable scope for the exploitation of resonances; and
(d), unlike second harmonic generation (SHG) or sum-frequency generation (SFG), they
present a flexibility of geometry. The latter characteristic can be usefully exploited for the
fullest characterization of the salient optical nonlinearity.

The signal of any parametricn-photon process generated within a molecular medium
involves the properties of the radiation and the medium itself. In the electric-dipole
approximation, the latter is characterized by the appropriate nonlinear polarizability, which
depends on the detailed structure of the molecular electronic states, and also the transition
dipole moments connecting pairs of states—at least one of which is virtual. The product of
these transition moments connects the initial and final states, which, in a parametric process, are
identical (usually the ground state 0). The various routes between the initial and the final states
necessarily feature diagonal matrix elements, corresponding to permanent dipole moments, as
well as off-diagonal terms.
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The importance in many systems of the permanent dipole moments, though much
overlooked in the infancy of the subject, is now well known. The role of such moments
is particularly significant in non-centrosymmetric or polar molecules displaying a significant
degree of intramolecular charge transfer on electronic excitation—usually quantified in terms
of the vector difference between the permanent dipole moments of the excited state and the
ground state, traditionally denoted asd [19–21]. Here, we are interested in systems with
an optical response dominated by just one electronic excited state (u) and, therefore, only
one vector displacement associated with intramolecular charge transfer: such systems are
often referred to as two-level systems. In this work the detailed role of permanent moments
in several optical processes of high-order nonlinearity is analysed by use of a transformed
interaction Hamiltonian, which considerably simplifies the calculations and directly isolates
terms dependent on the displacement vector for charge transfer.

2. Quantum electrodynamical formalism

The quantum system is formed by the molecules and the electromagnetic field (EM). It is
represented by a full quantum electrodynamical (QED) Hamiltonian, which can be described
in terms of the Power–Zienau–Woolley formalism [22]. The specific formulation, which is used
in the following sections is based on our previous work [23], where the interaction between the
EM field and the molecules,Hint(ξ), is considered in the usual electric-dipole approximation.

To analyse ann-photon process in a dilute molecular medium we make use ofnth order
perturbation theory. The probability amplitude for the transition from the initial to the final
state of the system can be expressed as a sum of terms from each molecule or optically distinct
centre:

S =
M∑
ξ=1

Sξ (2.1)

where the first non-zero contribution for each molecule is the transition matrix element of the
time-evolution operator,UI , in the interaction representation

Sξ = 〈f |UI |i〉ξ = 〈fsub|Hint(ξ)
{(
E(0)sys−H(0)

)−1
Hint(ξ)

}n−1|isub〉ξ . (2.2)

By employing the completeness relation identity between the operators{(
E(0)sys−H(0)

)−1
Hint(ξ)

}
in equation (2.2), each individual probability amplitude can be expressed as a tensor product of
the radiation tensor,γα1...αn , and the nonlinear polarizability or high-order hyperpolarizability
tensorOfi(ηω)

α1...αn (ξ) [24]. The former depends on the polarization vectors of incident photons,
and their complex conjugates for emitted photons, multiplied by other beam parameters, which
need not concern us here. On the other hand,O

fi(ηω)
α1...αn (ξ) depends on the differences in energy

between the initial state and each of the intermediate states, and on the electric-dipole transition
moments, which link the initial and final molecular states through the sequence of virtual
intermediate states. In a two-level system there are 2n−1 such molecular state sequences. It
is the nonlinear polarizabilityOfi(ηω)

α1...αn (ξ) that is our present concern. For condensed systems,
the optical response can then be cast in terms of the bulk susceptibilityXα1...αn , through [25]

Xα1...αn ≡ ρL(ηω)α1...α2n
⊗Ofi(ηω)

αn+1...α2n
(ξ) (2.3)
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whereρ is the number density andL(ηω)α1...α2n
is a Lorentz factor tensor of rank 2n given by the

outer tensor product ofn rank-2 tensors;

L(ηω) = ( 1
3

)n n∏
i=1

(κωi + 2δ). (2.4)

Hereκωi is the dielectric tensor for frequencyωi andδ is the Kronecker delta tensor.
For molecular systems, which have an optical response dominated by only two electronic

states, it has been shown that a transformed interaction Hamiltonian,

H ′int(ξ) = −
[
µ(ξ)− µ00(ξ)

]
· e⊥(Rξ ) (2.5)

is valid for deriving its optical response [19, 20, 26–31]. The subtraction in the square brackets
in equation (2.5) is the permanent dipole moment of the initial molecular state, in this case
the ground state. The first non-zero contribution to the probability amplitude can properly be
expressed in terms ofH ′int(ξ) as follows:

Sξ = 〈f |UI |i〉ξ = 〈fsub|H ′int(ξ)
{(
E(0)sys−H(0)

)−1
H ′int(ξ)

}n−1|isub〉ξ . (2.6)

Use of the transformed interaction Hamiltonian has the effect of nullifying the permanent
dipole moment of the ground state and recasting the permanent dipole moment of the excited
state as the difference between the two [23]. Therefore, as in equation (2.2), the individual
probability amplitude can be written as the product of two tensorsγα1...αn andO ′ f i(ηω)α1...αn (ξ),
where the prime indicates the recast form of the latter tensor in terms of

[
µ(ξ) − µ00(ξ)

]
.

Consequently, the number of molecular state sequences linking the initial and final molecular
states is substantially reduced from 2n−1, since all sequences that involve the permanent dipole
moment of the initial (ground) state give a null contribution to the nonlinear polarizability.

As will become evident, particular consideration must be given to cases of secular and non-
secular resonance. The latter occur when any molecular excited state differs from the initial
state by an amount corresponding to the net energy of a subset of the photons involved. The
degree of associated enhancement depends on the magnitude of the damping factors used to
extend the theory to dispersive frequency regions. Recent detailed studies [32] based on time-
reversal symmetry have confirmed that these damping factors should appear with a consistent
sign as tilde energies̃Eik0, representingẼik0 ≡ (Eik − i0ik ) − E0, where0ik is the damping
factor of the excited stateik (with energyEik ) and whereE0 is the energy of the ground state.
In secular resonances, a particular subset of photons involved in the process has an overall null
energy exchange with the system. In the nonlinear polarizability contribution, for which the
intermediate molecular state is identical to the initial state, an apparently divergent response is
present; however, the divergent terms are in general present in groups which combine to give
a finite (even null) correct response, see, for example, [17].

Before applying the QED formalism to high-order processes, it is helpful to illustrate the
procedure by addressing the simple case of three-wave mixing. The analysis of such a process
exemplifies the equivalence of equations (2.2) and (2.6) forn = 3. In the traditional approach,
expression (2.2) for any three-photon process has 22 possible molecular state sequences; the
exponent 2 takes account of the number of intermediate states involved, while the 2 in the base
shows that the system is represented by only two electronic states. Specifically, where the two
participating states are the ground state 0 and an upper stateu, the molecular state sequences
can be classified by the numberp of 0u (u0) segments involved;

p = 0: 0000

p = 2: 0uu0, 0u00, 00u0.

The distinction is significant because the corresponding terms in the nonlinear polarizability
entails preciselyp transition dipole moments. It is also necessary to consider all the possible



2280 L C D Romero and D L Andrews

time orderings that contribute, as represented by distinct Feynman diagrams (FD). In this case
there are at the most 3!= 6 FD, depending on the number of beams that are involved (for
example, in second harmonic generation the degeneracy reduces the number of FD to 3). In
summary, the tensor characterizing a three-photon parametric process in a two-level system
has in general 4× 6= 24 different contributions.

To determine the nonlinear polarizability for this process, let us first consider the molecular
state sequence that involves only the ground state, 0000. Here, the hyperpolarizability tensor
as given by equation (2.2) has a contribution given by the six time orderings of this particular
sequence†; ∑

π{1,2,3}

(
µ00
i3
µ00
i2
µ00
i1

(η2h̄ω2 + η1h̄ω1)(η1h̄ω1)

)
π

(2.7)

where
∑

π{1,2,3}( )π is defined as the sum of all possible permutations of the three modes (ω1,
ω2 andω3), and

ηi ≡ η(ωi) =
{
−1 for photon absorption

+1 for photon emission.

After some algebra, expression (2.7) can be written as

µ00
i1
µ00
i2
µ00
i3

[ ∑3
i=1(ηih̄ωi)

(η3h̄ω3)(η2h̄ω2)(η1h̄ω1)

]
. (2.8)

As befits a parametric process, the energy conservation condition implies that the numerator of
expression (2.8) is zero, and therefore the susceptibility has no contribution from this sequence.

Of the remaining 18 terms there are six time orderings (FD) for each of the molecular
state sequences withp = 2. Using the sum notation introduced in expression (2.7) we can
write all these terms in a compact form:∑
π{1,2,3}

(
µ0u
i3
µuui2 µ

u0
i1

(E + η2h̄ω2 + η1h̄ω1)(E + η1h̄ω1)
+

µ0u
π{3}µ

u0
π{1}µ

00
π{2}

(E + η1h̄ω1 + η2h̄ω2)(η2h̄ω2)

+
µ00
i2
µ0u
i3
µu0
i1

(η3h̄ω3 + η1h̄ω1)(E + η1h̄ω1)

)
π

(2.9)

whereE ≡ Eu0 = Eu − E0. Equation (2.9) can be re-expressed as∑
π{1,2,3}

(
µ0u
i3
di2µ

u0
i1

(E + η2h̄ω2 + η1h̄ω1)(E + η1h̄ω1)
+

µ0u
ii3
µu0
i1
µ00
i2

(E + η1h̄ω1)(η2h̄ω2)

+
µ00
i2
µ0u
i3
µu0
i1

(η3h̄ω3 + η1h̄ω1)(E + η1h̄ω1)

)
π

=
∑

π{1,2,3}

(
µ0u
i3
di2µ

u0
i1

(E + η2h̄ω2 + η1h̄ω1)(E + η1h̄ω1)

+
µ0u
i3
µu0
i1
µ00
i2

∑3
i=1(ηih̄ωi)

(η3h̄ω3 + η1h̄ω1)(E + η1h̄ω1)(η2h̄ω2)

)
π

(2.10)

and the last term in equation (2.10) is again zero because of energy conservation. As a
result, equations (2.8) and (2.10) together show that for the three-photon process the nonlinear
polarizability tensor can be simply expressed as∑

π{1,2,3}

(
µ0u
i3
di2µ

u0
i1

(E + η2h̄ω2 + η1h̄ω1)(E + η1h̄ω1)

)
π

(2.11)

† This expression is proportional to the coefficientL00
3,3 of [23].
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which is consistent with the form obtained directly by use of the transformed interaction
Hamiltonian in (2.6), as shown in [23]. It can be seen that the only state sequence that
contributes to the final form of the hyperpolarizability tensor, expression (2.11), is the one
which does not involve a 00 segment (0uu0), and in which theuu segment is related to the
d = µuu − µ00 vector. This rule can be followed in anyn-photon process.

For cases involving higher numbers of photons the calculation of the hyperpolarizability
tensor, through equation (2.2), becomes increasingly difficult. The main complication when
dealing with systems involvingn > 3 photons is that the number of sequences and FDs
increases rapidly, giving a total of 2(n−1)n!, all of which give net contribution toOfi(ηω)

α1...αn (ξ).
On the other hand, when the transformed interaction Hamiltonian (2.5) is used, the number
of sequences, which give a net contribution is reduced drastically, allowing the derivation of
expressions for the salient nonlinear polarizability tensors in a direct and simple manner. In
particular, this method facilitates the identification of terms involving a linear or higher-order
dependence ond, the vector signifying the extent of intramolecular charge transfer on optical
excitation.

3. High-order processes in two-level systems

The equivalence between the result of implementing the two interaction Hamiltonians expedites
direct and concise formulation of the nonlinear polarizability tensors for four-, five- and six-
wave mixing processes. Hence instead of using all 2n−1 molecular sequences to determine the
detailed tensor structure, the following simple algorithm can be used to obtain the expressions
given by the transformed interaction Hamiltonian [23]:

µuu 7→ µuu − µ00 = d µ00 7→ 0 (3.1)

whilst the transition dipole moments remain unaltered. This algorithm therefore allows us to
discard any contribution associated with a molecular state sequence that involves the segment
00, as long as the segmentuu is appropriately reinterpreted.

3.1. Four-wave mixing

In this process there are 23 = 8 molecular state sequences and 4!= 24 time orderings for
each sequence. As in the three-wave mixing process, these molecular state sequences can be
classified by the number of 0u segments involved (p);

p = 0: 00000

p = 2: 0uuu0, 0uu00, 00uu0, 0u000, 00u00, 000u0

p = 4: 0u0u0.

By application of the algorithm, it transpires that only sequences 0uuu0 and 0u0u0, which
have no permanent dipole momentµ00 involved, contribute to the nonlinear polarizability
tensor, which thereby assumes the following form:∑
π{1,2,3,4}

(
µ0u
i4
di3di2µ

u0
i1

(E + η3h̄ω3 + η2h̄ω2 + η1h̄ω1)(E + η2h̄ω2 + η1h̄ω1)(E + η1h̄ω1)

+
µ0u
i4
µu0
i3
µ0u
i2
µu0
i1

(E + η3h̄ω3 + η2h̄ω2 + η1h̄ω1)(η2h̄ω2 + η1h̄ω1)(E + η1h̄ω1)

)
π

. (3.2)

In the compact form given by (3.2) it is obvious that in the particular case where|d| � ∣∣µu0
∣∣ the

first term becomes dominant and the second can be neglected, and vice versa for|d| � ∣∣µu0
∣∣.
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In the latter case, special consideration must be taken since secular resonance can occur if
two of the four photons involved in the process satisfy the relation(ηih̄ωi + ηj h̄ωj ) = 0, for
∀i, j such thati, j ∈ {1, 2, 3, 4}. In that case, the susceptibility tensor as written in (3.2)
presents singularities in the second term, which must be addressed carefully. It can also be
seen from equation (3.2) that, ford = 0 (i.e.µuu = µ00), the hyperpolarizability tensor is a
null tensor only if the transition dipole moment is also zero. This characteristic is a feature of
any even-photon process [23].

3.1.1. Particular case. A particular case of four-wave mixing is a process involving two laser
beams, where the system absorbs from one beam two photons of frequencyω, while the second
beam of frequencyω′ acts as a pump producing stimulated emission. As a result, a signal is
produced with frequencyω′′ which, since the process is parametric, satisfies the condition
ω′′ = 2ω − ω′. In passing, we note that this process can offer a distinctive rate enhancement
when the frequency difference|ω−ω′|coincides with a Raman-active frequency of the medium.
However, to appropriately describe this widely studied case, known as coherent anti-Stokes
Raman scattering (CARS), it is better to cast the theory in terms of a three-level system, for
which the expression given in (3.2) is no longer representative. We shall therefore limit our
study to the case where|ω − ω′| is not a Raman-active frequency. Table 1 summarizes the
characteristics of the photons involved. Although in this table the propagation vectors are
included to fully specify the process, it is important to notice that for the calculation of the
nonlinear polarizability tensor, here or for anyn-photon process related to dipolar coupling,
this data are superfluous. For the particular case under consideration it is readily seen that the
condition(ηih̄ωi +ηj h̄ωj ) = 0 is not satisfied for any pairi, j ∈ {1, 2, 3, 4}, and consequently
there is no secular resonance.

Table 1. Photon characteristics for a particular four-wave mixing process (the angle betweenk̂ and
k̂′ is arbitrary, and the labelsλ, λ′ andλ′′ refer to the polarizations of the beams). The frequencies
of the beams involved satisfy the energy conservation conditionω′′ = 2ω − ω′.

Frequency Direction of propagation

Absorbed photons

(k, λ) ω1 = ω η1 = 1 k̂

(k, λ) ω2 = ω η2 = 1 −k̂
Emitted photons

(k′, λ′) ω3 = ω′ η3 = −1 k̂′

(k′′, λ′′) ω4 = ω′′ η4 = −1 −k̂′

An expression for the nonlinear susceptibility tensor can now be written as a sum of
five different terms with numerators:µ0u

i djdkµ
u0
l , µ0u

j didlµ
u0
k , µ0u

i dkdlµ
u0
j , µ0u

k didjµ
u0
l and

µ0u
i µ

u0
j µ

0u
k µ

u0
l . The result of combining the different contributions is

O
(3)
ijkl(ω

′′; −ω′, ω, ω)
≡ O(3)

ij (kl)(ω
′′; −ω′, ω, ω)

= (µ0u
i djdkµ

u0
l +µ0u

i djdlµ
u0
k

)[{
2E
(
2E4 +E2

u0

(
8h̄2ω2 − 6h̄2ωω′

)
+39h̄4ω3ω′ + 3h̄4ωω′ 3− 18h̄4ω2ω′ 2 − 28h̄4ω4

)}{(
E2 − (2h̄ω − h̄ω′)2)

×(E2 − (h̄ω − h̄ω′)2)(E2 − 4(h̄ω)2)(E2 − (h̄ω)2)}−1]
+
(
µ0u
j didkµ

u0
l +µ0u

j didlµ
u0
k

)[{
2E
(
2E4 +E2

(− 4h̄2ω2 + 6h̄2ωω′
)
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−3h̄4ω3ω′ − 3h̄4ωω′ 3 + 2h̄4ω4
)}{(

E2 − (h̄ω − h̄ω′)2)(E2 − (h̄ω)2)
×(E2 − (h̄ω′)2)(E2 − 4(h̄ω)2

)}−1]
+µ0u

i dkdlµ
u0
j

[
4E
(
E2 + 3h̄2ω′ 2 − 6h̄2ωω′ − 2h̄2ω2

)(
E2 − (2h̄ω − h̄ω′)2)(E2 − (h̄ω − h̄ω′)2)(E2 − (h̄ω′)2)

]
+µ0u

k didjµ
u0
l

[
4E(

E2 − (h̄ω − h̄ω′)2)(E2 − (h̄ω)2)
]

+µ0u
i µ

u0
j µ

0u
k µ

u0
l

[
4E
(
E2(3h̄ω + h̄ω′)− h̄3ω′ 3 + h̄3ωω′ 2 + 4h̄4ω2ω′

)
(h̄ω)

(
E2 − (2h̄ω − h̄ω′)2)(E2 − (h̄ω)2)(E2 − (h̄ω′)2)

]
.

(3.3)

The symmetry of the tensor under the interchange of the sub-indices (kl) is due to the fact that
there are two photons in the process with identical frequency.

It is interesting to consider the case of electronic resonance, accommodated by inclusion
of damping;E ≡ Eu − E0→ Ẽ = (Eu − E0)− i0, where0/2h̄ is the frequency linewidth
of the stateu. Then, when any of the following conditions is satisfied:E ≈ h̄ω, E ≈ h̄ω′,
E ≈ 2h̄ω, E ≈ 2h̄ω − h̄ω′ or E ≈ h̄ω − h̄ω′; the system will exhibit resonance behaviour.
In each case, certain terms become dominant and the expression ofO

(3)
ij (kl)(ω

′′; −ω′, ω, ω) is
greatly simplified. In table 2 the different cases are tabulated, in each case the dominant terms
being inversely proportional to the damping factor0.

Table 2. Dominant terms in resonance four-wave mixing.

Resonance at 0−l

E ∼ 2h̄ω − h̄ω′ l = 1 µ0u
i dj dkµ

u0
l ; µ0u

i dj dlµ
u0
k ; µ0u

i dkdlµ
u0
j ;

µ0u
i µ

u0
j µ

0u
k µ

u0
l

E ∼ h̄ω − h̄ω′ l = 1 µ0u
i dj dkµ

u0
l ; µ0u

i dj dlµ
u0
k ; µ0u

j didkµ
u0
l ;

µ0u
j didlµ

u0
k ; µ0u

i dkdlµ
u0
j ; µ0u

k didjµ
u0
l

E ∼ 2h̄ω l = 1 µ0u
i dj dkµ

u0
l ; µ0u

i dj dlµ
u0
k ; µ0u

j didkµ
u0
l ;

µ0u
j didlµ

u0
k

E ∼ h̄ω l = 1 µ0u
i dj dkµ

u0
l ; µ0u

i dj dlµ
u0
k ; µ0u

j didkµ
u0
l ;

µ0u
j didlµ

u0
k ; µ0u

k didjµ
u0
l ; µ0u

i µ
u0
j µ

0u
k µ

u0
l

E ∼ h̄ω′ l = 1 µ0u
j didkµ

u0
l ; µ0u

j didlµ
u0
k ; µ0u

i dkdlµ
u0
j ;

µ0u
i µ

u0
j µ

0u
k µ

u0
l

3.2. Five-wave mixing

For this case there are 24 = 16 molecular state sequences and 120 (5!) FDs, which are again
classified in terms of the number of transition dipole moments

p = 0: 000000

p = 2: 0uuuu0, 0uuu00, 00uuu0, 0uu000, 00uu00, 000uu0, 0u0000, 00u000, 000u00,

000u0

p = 4: 0uu0u0, 0u0uu0, 0u0u00, 00u0u0, 0u00u0.

It can be readily seen, by applying the algorithm given in (3.1), that the sequences, which give
a finite contribution to the nonlinear polarizability tensor are 0uuuu0, 0uu0u0 and 0u0uu0.
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The same result is obtained, after some quite intricate algebra, when the traditional interaction
Hamiltonian is used. By either method the following result is obtained:∑
π{1,2,3,4,5}

(
µ0u
i5
di4di3di2µ

u0
i1(

E +
∑4

i=1 ηih̄ωi
)(
E +

∑3
i=1 ηih̄ωi

)(
E +

∑2
i=1 ηih̄ωi

)
(E + η1h̄ω1)

+
µ0u
i5
di4µ

u0
i3
µ0u
i2
µu0
i1(

E +
∑4

i=1 ηih̄ωi
)(
E +

∑3
i=1 ηih̄ωi

)(∑2
i=1 ηih̄ωi

)
(E + η1h̄ω1)

+
µ0u
i5
µu0
i4
µ0u
i3
di2µ

u0
i1(

E +
∑4

i=1 ηih̄ωi
)(∑3

i=1 ηih̄ωi
)(
E +

∑2
i=1 ηih̄ωi

)
(E + η1h̄ω1)

)
π

. (3.4)

Since the process involves an odd number of photons, the nonlinear response is forbidden when
d = 0. In the particular case where|d| � ∣∣µu0

∣∣, the main contribution to the tensor is given
by the first term. From equation (3.4) it can also be seen that singularities may be presented
by the second and third terms, for particular combinations of the frequencies involved. This
will occur whenever the photons involved satisfy( 2∑

i=1

ηih̄ωi

)
π

∼= 0 and/or

( 3∑
i=1

ηih̄ωi

)
π

∼= 0.

An example where these divergences are present is studied in the following subsection.

3.2.1. Particular case. Here we focus on a particular five-wave mixing process studied
in previous works [5–7], in those cases without consideration of secularity or the features
associated with two-level response. This system involves two different lasers, one of which
is used to generate two counterpropagating modes. A summary of the characteristics of each
beam is given in table 3 and a more extensive description of the process can be found in [5–7].

Table 3. Photon characteristics for a particular five-wave mixing process (the angle betweenk̂
and k̂′ is arbitrary, and the labelsλ, λ′, λ̃ andλ′′ refer to the polarizations of the beams). The
frequencies of the beams involved satisfy the energy conservation conditionω′′ = ω + ω′.

Frequency Direction of propagation

Absorbed photons

(k, λ) ω1 = ω η1 = 1 k̂

(−k, λ) ω2 = ω η2 = 1 −k̂
(k′, λ′) ω3 = ω′ η3 = 1 k̂′

Emitted photons

(k̃, λ̃) ω4 = ω η4 = −1 −k̂′
(k′′, λ′′) ω5 = ω′′ η5 = −1 k̂′

For this particular five-wave process, the second term of the polarizability tensor will
present secular resonances when( 2∑

i=1

ηih̄ωi

)
π

= η1,2h̄ω1,2 + η4h̄ω4 (3.5)

while for the third term this problem will arise when( 3∑
i=1

ηih̄ωi

)
π

= η1,2h̄ω1,2 + η3h̄ω3 + η5h̄ω5. (3.6)
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There are 12 terms for each type of singularity. Hence, the nonlinear polarizability can be
written as a sum of two terms:

O(4) = O(4)
non-sec+O

(4)
sec. (3.7)

The first term of equation (3.4) contributes only to the non-secular part,O
(4)
non-secin (3.7), while

the second and third terms of (3.4) contribute to both secular and non-secular terms in (3.7).
Then,O(4)

non-secis∑
π{1,2,3,4,5}

(
µ0u
i5
di4di3di2µ

u0
11(

E +
∑4

i=1 ηih̄ωi
)(
E +

∑3
i=1 ηih̄ωi

)(
E +

∑2
i=1 ηih̄ωi

)
(E + η1h̄ω1)

)
π

+
∑

non-sec
π{1,2,3,4,5}

(
µ0u
i5
di4µ

u0
i3
µ0u
i2
µu0
i1(

E +
∑4

i=1 ηih̄ωi
)(
E +

∑3
i=1 ηih̄ωi

)(∑2
i=1 ηih̄ωi

)
(E + η1h̄ω1)

+
µ0u
i5
µu0
i4
µ0u
i3
di2µ

u0
i1(

E +
∑4

i=1 ηih̄ωi
)(∑3

i=1 ηih̄ωi
)(
E +

∑2
i=1 ηih̄ωi

)
(E + η1h̄ω1)

)
π

. (3.8)

To address the singularities present inO(4)
sec, it is expedient to introduce a slight variation

of the frequencies of the anti-parallel beams [17]:

ω1 = ω→ ω + δ ω2 = ω→ ω − δ
ω3 = ω′ → ω′ ω4 = ω→ ω ω5 = ω′′ → ω′′.

(3.9)

When the limit ofδ→ 0 is taken, a finite combination of the terms leading to singularities is
effected, and a well ordered result for the five-wave mixing process of interest is recovered. All
48 terms are tackled in a similar manner. For instance, let us consider the FD that corresponds
to the time orderingπ{1, 2, 3, 4, 5} → (ω2, ω3, ω5, ω1, ω4) and sum with its counterpart,
whereω1 andω2 are interchanged,

(E − h̄ω)−1(−h̄δ)−1(E − h̄ω − h̄δ − h̄ω′)−1(E − h̄ω − h̄δ)−1µ0u
i4
µu0
i2
µ0u
i5
di3µ

u0
i1

+(E − h̄ω)−1(h̄δ)−1(E − h̄ω + h̄δ − h̄ω′)−1(E − h̄ω + h̄δ)−1

×µ0u
i4
µu0
i1
µ0u
i5
di3µ

u0
i2
. (3.10)

Factorizing and taking the limit ofδ→ 0, we can rewrite the expression as

µ0u
i4
µu0
i1
µ0u
i5
di3µ

u0
i2
(E − h̄ω − h̄ω′)−1(E − h̄ω)−2(−2)

{
(E − h̄ω − h̄ω′)−1 + (E − h̄ω)−1

}
(3.11)

and the apparent singularity is removed. Proceeding in this way, the final and complete result
for the secular part of the nonlinear susceptibility is

O(4)
sec= (−1)

(
µ0u
i5
di2µ

u0
i3
µ0u
i4
µu0
i1

+µ0u
i5
di1µ

u0
i3
µ0u
i4
µu0
i2

)
×{(E − h̄ω − h̄ω′)−1(E − h̄ω′)−1(E − h̄ω)−1

×[(E − h̄ω − h̄ω′)−1 + (E − h̄ω′)−1 + (E − h̄ω)−1
]

+(E − h̄ω − h̄ω′)−1(E − h̄ω′)−1(E + h̄ω)−1

×[(E − h̄ω − h̄ω′)−1 + (E − h̄ω′)−1 + (E + h̄ω)−1
]

+(E + h̄ω + h̄ω′)−1(E + h̄ω′)−1(E − h̄ω)−1

×[(E + h̄ω + h̄ω′)−1 + (E + h̄ω′)−1 + (E − h̄ω)−1
]

+(E + h̄ω + h̄ω′)−1(E + h̄ω′)−1(E + h̄ω)−1

×[(E + h̄ω + h̄ω′)−1 + (E + h̄ω′)−1 + (E + h̄ω)−1
]}
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+(−2)
(
µ0u
i3
di5µ

u0
i2
µ0u
i4
µu0
i1

)
×{(E + h̄ω′)−1(E − h̄ω)−2

[
(E + h̄ω′)−1 + 2(E − h̄ω′)−1

]
+(E + h̄ω′)−1(E − h̄ω)−1(E + h̄ω)−1

×[(E + h̄ω′)−1 + (E − h̄ω)−1 + (E + h̄ω)−1
]

+(E − h̄ω′)−1(E − h̄ω)−1(E + h̄ω)−1

×[(E − h̄ω′)−1 + (E − h̄ω)−1 + (E + h̄ω)−1
]

+(E − h̄ω′)−1(E + h̄ω)−2
[
(E − h̄ω′)−1 + 2(E + h̄ω)−1

]}
+(−2)

(
µ0u
i5
di3µ

u0
i2
µ0u
i4
µu0
i1

)
×{(E − h̄ω − h̄ω′)−1(E − h̄ω)−2

[
(E − h̄ω − h̄ω′)−1 + 2(E − h̄ω)−1

]
+(E − h̄ω − h̄ω′)−1(E + h̄ω)−1(E − h̄ω)−1

×[(E − h̄ω − h̄ω′)−1 + (E + h̄ω)−1 + (E − h̄ω)−1
]

+(E + h̄ω + h̄ω′)−1(E + h̄ω)−1(E − h̄ω)−1

×[(E + h̄ω + h̄ω′)−1 + (E + h̄ω)−1 + (E − h̄ω)−1
]

+(E + h̄ω + h̄ω′)−1(E + h̄ω)−2
[
(E + h̄ω + h̄ω′)−1 + 2(E + h̄ω)−1

]}
. (3.12)

The sum of equations (3.8) and (3.12) completely determines the nonlinear response for
this particular process. The degeneracy in frequency of two of the photons involved in the
process,ω1 = ω2, causes the nonlinear polarizability tensor to present an index symmetry,
O
(4)
i1i2i3i4i5

= O(4)
(i1i2)i3i4i5

. This allows one to express the tensor as a sum of 11 terms. There is no
other symmetry present, so the expression for the sum is highly complicated. However, it is
greatly simplified whenω′ = ω, in which case the five-wave process represents a higher-order
correction to SHG. Then, the tensor reduces to a sum of six terms:

O
(4)
i1i2i3i4i5

(ω′′; −ω,ω, ω, ω)
≡ O(4)

(i1i2i3)i4i5
(ω′′; −ω,ω, ω, ω)

= 12
1(

E2 − h̄2ω2
)(
E2 − 4h̄2ω2

)
×[µ0u

i1
di3di4di5µ

u0
i2

+µ0u
i2
di1di4di5µ

u0
i3

+µ0u
i1
di2di4di5µ

u0
i3

+µ0u
i4
di1di2di3µ

u0
i5

]
+12

(
E2 + h̄2ω2

)(
E2 − h̄2ω2

)(
E2 − 4h̄2ω2

)(
E2 − 9h̄2ω2

)
×[µ0u

i1
di2di3di5µ

u0
i4

+µ0u
i2
di1di3di5µ

u0
i4

+µ0u
i3
di1di2di5µ

u0
i4

]
+12

(
E2 + 11h̄2ω2

)(
E2 − h̄2ω2

)(
E2 − 4h̄2ω2

)(
E2 − 9h̄2ω2

)
×[µ0u

i1
di2di3di4µ

u0
i5

+µ0u
i2
di1di3di4µ

u0
i5

+µ0u
i3
di1di2di4µ

u0
i5

]
+72

E2
(−E4 +E2h̄2ω2 + 4h̄4ω4

)(
E2 − h̄2ω2

)3(
E2 − 4h̄2ω2

)2
×[di1µu0

i2
µu0
i3
µu0
i4
µu0
i5

+ di2µ
u0
i1
µu0
i3
µu0
i4
µu0
i5

+ di3µ
u0
i1
µu0
i2
µu0
i4
µu0
i5

]
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Table 4. Dominant terms in resonance five-wave mixing.

Resonance at 0−l

E ∼ h̄ω l = 3 di1µ
u0
i2
µu0
i3
µu0
i4
µu0
i5

; di2µ
u0
i1
µu0
i3
µu0
i4
µu0
i5

; di3µ
u0
i1
µu0
i2
µu0
i4
µu0
i5

;

di4µ
u0
i1
µu0
i2
µu0
i3
µu0
i5

l = 1 di5µ
u0
i1
µu0
i2
µu0
i3
µu0
i4

; µ0u
i1
di3di4di5µ

u0
i2

; µ0u
i2
di1di4di5µ

u0
i3

;

µ0u
i1
di2di4di5µ

u0
i3

; µ0u
i4
di1di2di3µ

u0
i5

; µ0u
i1
di2di3di4µ

u0
i5

;

µ0u
i2
di1di3di4µ

u0
i5

; µ0u
i3
di1di2di4µ

u0
i5

; µ0u
i1
di2di3di5µ

u0
i4

;

µ0u
i2
di1di3di5µ

u0
i4

; µ0u
i3
di1di2di5µ

u0
i4

E ∼ 2h̄ω l = 2 di1µ
u0
i2
µu0
i3
µu0
i4
µu0
i5

; di2µ
u0
i1
µu0
i3
µu0
i4
µu0
i5

; di3µ
u0
i1
µu0
i2
µu0
i4
µu0
i5

;

l = 1 µ0u
i1
di3di4di5µ

u0
i2

; µ0u
i2
di1di4di5µ

u0
i3

; µ0u
i1
di2di4di5µ

u0
i3

;

µ0u
i4
di1di2di3µ

u0
i5

; µ0u
i1
di2di3di4µ

u0
i5

; µ0u
i2
di1di3di4µ

u0
i5

;

µ0u
i3
di1di2di4µ

u0
i5

; µ0u
i1
di2di3di5µ

u0
i4

; µ0u
i2
di1di3di5µ

u0
i4

;

µ0u
i3
di1di2di5µ

u0
i4

E ∼ 3h̄ω l = 1 µ0u
i1
di2di3di4µ

u0
i5

; µ0u
i2
di1di3di4µ

u0
i5

; µ0u
i3
di1di2di4µ

u0
i5

;

µ0u
i1
di2di3di5µ

u0
i4

; µ0u
i2
di1di3di5µ

u0
i4

; µ0u
i3
di1di2di5µ

u0
i4

;

di4µ
u0
i1
µu0
i2
µu0
i3
µu0
i5

; di5µ
u0
i1
µu0
i2
µu0
i3
µu0
i4

+(−72)
1(

E2 − h̄2ω2
)(
E2 − 9h̄2ω2

)di4µu0
i1
µu0
i2
µu0
i3
µu0
i5

+24

(−3E4 + 16E2h̄2ω2 + 3h̄4ω4
)(

E2 − h̄2ω2
)3(
E2 − 9h̄2ω2

) di5µu0
i1
µu0
i2
µu0
i3
µu0
i4
. (3.13)

From this expression it is easy to establish the importance of the different terms in cases of
non-secular resonance (E ∼ h̄ω,E ∼ 2h̄ω orE ∼ 3h̄ω). In table 4 a summary of the different
cases is given. For the first two cases (E ∼ h̄ω, E ∼ 2h̄ω) the main contribution is given by
those terms proportional to0−3 and0−2, respectively, while in the third case (E ∼ 3h̄ω) all
terms have a directly inverse proportionality to the damping factor.

For those molecular systems, in which the transition dipole momentµ0u and the vector
d differs substantially in magnitude, some of the terms become more relevant than others. If∣∣µ0u

∣∣� |d|, then the most relevant terms are those in the first three terms in equation (3.13).
On the other hand, if

∣∣µ0u
∣∣� |d|, only the last four terms are relevant.

3.3. Six-wave mixing

For a six-wave mixing process the number of terms involved is 6!× 25 = 23 040, whilst the
number of sequences involved is 25. These can be grouped as follows:

p = 0: 0000000

p = 2: 0uuuuu0, 0uuuu00, 00uuuu0, 0uuu000, 00uuu00, 000uuu0, 0uu0000, 00uu000,

000uu00, 0000uu0, 0u00000, 00u0000, 000u000, 0000u00, 00000u0

p = 4: 0uuu0u0, 0u0uuu0, 0uu0uu0, 0uu0u00, 0uu00u0, 0u00uu0, 00u0uu0, 0u0uu00,

00uu0u0, 0u0u000, 0u00u00, 0u000u0, 00u0u00, 00u00u0, 000u0u0

p = 6: 0u0u0u0.

The final expression, which is equivalent to that obtained using the transformed interaction
Hamiltonian, entails five sequences: 0uuuuu0, 0uuu0u0, 0u0uuu0, 0uu0uu0 and 0u0u0u0,
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as given by the application of the algorithm (3.1). Thus, the nonlinear polarizability tensor for
the six-wave process is written as∑
π{1,2,3,4,5,6}

((
µ0u
i6
di5di4di3di2µ

u0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1(
E +

4∑
i=1

ηih̄ωi

)−1

×
(
E +

3∑
i=1

ηih̄ωi

)−1(
E +

2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1

+
(
µ0u
i6
di5di4µ

u0
i3
µ0u
i2
µu0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1(
E +

4∑
i=1

ηih̄ωi

)−1

×
(
E +

3∑
i=1

ηih̄ωi

)−1( 2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1

+
(
µ0u
i6
µu0
i5
µ0u
i4
di3di2µ

u0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1( 4∑
i=1

ηih̄ωi

)−1

×
(
E +

3∑
i=1

ηih̄ωi

)−1(
E +

2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1

+
(
µ0u
i6
di5µ

u0
i4
µ0u
i3
di2µ

u0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1(
E +

4∑
i=1

ηih̄ωi

)−1

×
( 3∑
i=1

ηih̄ωi

)−1(
E +

2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1

+
(
µ0u
i6
µu0
i5
µ0u
i4
µu0
i3
µ0u
i2
µu0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1( 4∑
i=1

ηih̄ωi

)−1

×
(
E +

3∑
i=1

ηih̄ωi

)−1( 2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1

)
π

. (3.14)

Since this process involves an even number of photons, even ford = 0 the tensor remains
non-zero and is identical to the last term in equation (3.14). On the other hand, if|d| � ∣∣µu0

∣∣,
then the result can be represented by the first term alone. Again, it is important to notice that
for certain six-wave mixing processes secular resonance might be presented when one or more
of the following identities is satisfied:( 2∑
i=1

ηih̄ωi

)
π

∼= 0

( 3∑
i=1

ηih̄ωi

)
π

∼= 0 and/or

( 4∑
i=1

ηih̄ωi

)
π

∼= 0.

In any of these cases there will be singularities in some of the last four terms of equation (3.14).
For example, when studying SHG in a six-wave mixing process, there are singularities of the
second kind. We will study this case in the following subsection.

3.3.1. Particular case. As observed above, with a larger number of photons involved in the
process, explicit expression of the nonlinear polarizability tensor produces a rapidly increasing
number of terms, which makes it difficult to handle. For cases where the beams involved
are characterized by some kind of symmetry this number nevertheless reduces drastically.
This is well illustrated by the case of the six-wave mixing process, which effects second
harmonic generation in centrosymmetric media [8, 10, 11]. The nonlinearity which mediates
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Table 5. Photon characteristics for a particular six-wave mixing process (the angle betweenk̂
andk̂′ is arbitrary, and the labelsλ, λ′, λ′′ andλ′′′ refer to the polarizations of the beams). The
frequencies of the beams involved satisfy the energy conservation conditionω′′ = 2ω.

Frequency Direction of propagation

Absorbed photons

(k, λ) ω1 = ω η1 = 1 k̂

(k, λ) ω1 = ω η1 = 1 k̂

(−k, λ′) ω3 = ω η3 = 1 −k̂
(−k, λ′) ω4 = ω η4 = 1 −k̂
Emitted photons

(k′′, λ′′) ω5 = ω′′ η5 = −1 k̂′

(−k′′, λ′′′) ω6 = ω′′ η6 = −1 −k̂′

this six-wave interaction can be represented asO(5)(ω′′; −ω′′, ω, ω, ω, ω), the parameters
within parentheses successively represent the harmonic signal photon, the harmonic pump
photon, the two photons of one fundamental frequency input and, finally, the two photons of
the other (counterpropagating) fundamental input. The beam parameters are fully characterized
in table 5.

The first simplification results from recognition that, since the energy denominators of
the tensor are not dependent on the beam direction, the four fundamental frequency photons
are interchangeable and so too are the two harmonic photons. This reduces the number of
different energy denominators to a set of 15, the same as those which arise in connection with
a much simpler six-wave interaction described previously [10]. Using expression (3.14) for a
general six-photon process, the response tensor can be written as a sum of five different terms,
each of which involves all the non-equivalent beam permutations. As in the particular case of
the five-wave mixing process examined in section 3.2.1, there are some terms involved which
have a secular resonance present. This problem has already been solved [17] and we will apply
these results for the particular case of a two-level molecular system. Then,O(5) can be written
as follows, dividing the contributions from the secular and non-secular parts:

∑
π{1,2,3,4,5,6}

((
µ0u
i6
di5di4di3di2µ

u0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1(
E +

4∑
i=1

ηih̄ωi

)−1(
E +

3∑
i=1

ηih̄ωi

)−1

×
(
E +

2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1

+
(
µ0u
i6
µu0
i5
µ0u
i4
µu0
i3
µ0u
i2
µu0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1( 4∑
i=1

ηih̄ωi

)−1

×
(
E +

3∑
i=1

ηih̄ωi

)−1( 2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1

+
(
µ0u
i6
di5di4µ

u0
i3
µ0u
i2
µu0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1(
E +

4∑
i=1

ηih̄ωi

)−1

×
(
E +

3∑
i=1

ηih̄ωi

)−1( 2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1
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+
(
µ0u
i6
µu0
i5
µ0u
i4
di3di2µ

u0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1( 4∑
i=1

ηih̄ωi

)−1

×
(
E +

3∑
i=1

ηih̄ωi

)−1(
E +

2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1

)
π

+
∑

non-secular
π{1,2,3,4,5,6}

((
µ0u
i6
di5µ

u0
i4
µ0u
i3
di2µ

u0
i1

)(
E +

5∑
i=1

ηih̄ωi

)−1(
E +

4∑
i=1

ηih̄ωi

)−1

×
( 3∑
i=1

ηih̄ωi

)−1(
E +

2∑
i=1

ηih̄ωi

)−1

(E + η1h̄ω1)
−1

)
π

+
∑

secular
p=1,...,9

O
(p)

sec;(i,jk)(l,mn) (3.15)

where the sum labelled as ‘non-secular,π{1, 2, 3, 4, 5, 6}’ is subject to the condition(∑3
i=1 ηih̄ωi

)
π
6= 0. Expression (3.15) shows that, in this case, there is only one term

which has secular resonances present. The cases where
(∑3

i=1 ηih̄ωi
)
π
= h̄ω′ − h̄ω − h̄ω

or
(∑3

i=1 ηih̄ωi
)
π
= h̄ω′′ − h̄ω − h̄ω are contained in the last line of equation (3.15). The

explicit expressions for the nine different contributions, given in table 6, are equivalent to those
in [17], but are expressed more concisely here.

Table 6. Secular terms for six-wave SHG.

O
(1)
sec;(i,jk)(l,mn) = −(µ0u

i djµ
u0
k µ

0u
l dmµ

u0
n )2(Ẽ − h̄ω)−1(Ẽ − 2h̄ω)−1{(Ẽ − h̄ω)−1 + (Ẽ − 2h̄ω)−1}

O
(2)
sec;(i,jk)(l,mn) = −(µ0u

j diµ
u0
k µ

0u
l dmµ

u0
n )(Ẽ − h̄ω)−2(Ẽ − 2h̄ω)−1(Ẽ + h̄ω)−1

×{2(Ẽ − h̄ω)−1 + (Ẽ − 2h̄ω)−1 + (Ẽ + h̄ω)−1}
O
(3)
sec;(i,jk)(l,mn) = −(µ0u

j dkµ
u0
i µ

0u
l dmµ

u0
n )(Ẽ − h̄ω)−1(Ẽ − 2h̄ω)−1(Ẽ + 2h̄ω)−1(Ẽ + h̄ω)−1

×{(Ẽ − h̄ω)−1 + (Ẽ − 2h̄ω)−1 + (Ẽ + 2h̄ω)−1 + (Ẽ + h̄ω)−1}
O
(4)
sec;(i,jk)(l,mn) = −(µ0u

j dkµ
u0
i µ

0u
m dlµ

u0
n )(Ẽ − h̄ω)−1(Ẽ + 2h̄ω)−1(Ẽ + h̄ω)−2

×{(Ẽ − h̄ω)−1 + (Ẽ + 2h̄ω)−1 + 2(Ẽ + h̄ω)−1}
O
(5)
sec;(i,jk)(l,mn) = −(µ0u

j dkµ
u0
i µ

0u
m dnµ

u0
l )2(Ẽ + 2h̄ω)−1(Ẽ + h̄ω)−1{(Ẽ + 2h̄ω)−1 + (Ẽ + h̄ω)−1}

O
(6)
sec;(i,jk)(l,mn) = O(4)

sec;(k,j i)(n,ml) = −(µ0u
j diµ

u0
k µ

0u
m dnµ

u0
l ){(Ẽ + 2h̄ω)(Ẽ − h̄ω)}−1(Ẽ + h̄ω)−2

×{(Ẽ + 2h̄ω)−1 + (Ẽ − h̄ω)−1 + 2(Ẽ + h̄ω)−1}
O
(7)
sec;(i,jk)(l,mn) = O(3)

sec;(k,ij)(m,nl) = −(µ0u
i djµ

u0
k µ

0u
m dnµ

u0
l )(Ẽ + 2h̄ω)−1(Ẽ + h̄ω)−1(Ẽ − h̄ω)−1(Ẽ − 2h̄ω)−1

×{(Ẽ + 2h̄ω)−1 + (Ẽ + h̄ω)−1 + (Ẽ − h̄ω)−1 + (Ẽ − 2h̄ω)−1}
O
(8)
sec;(i,jk)(l,mn) = O(2)

sec;(j,ik)(m,ln) = −(µ0u
i djµ

u0
k µ

0u
m dlµ

u0
n )(Ẽ − h̄ω)−2(Ẽ + h̄ω)−1(Ẽ − 2h̄ω)−1

×{2(Ẽ − h̄ω)−1 + (Ẽ + h̄ω)−1 + (Ẽ − 2h̄ω)−1}
O
(9)
sec;(i,jk)(l,mn) = −(µ0u

j diµ
u0
k µ

0u
m dlµ

u0
n )2(Ẽ − h̄ω)−2(Ẽ + h̄ω)−2{(Ẽ − h̄ω)−1 + (Ẽ + h̄ω)−1}

Because this particular case is highly degenerate, the terms of the ten-
sor can be grouped by the type of numerator, of which only six arise:
µ0u
h µ

0u
h µ

0u
f µ

0u
f µ

0u
f µ

0u
f , µ0u

h µ
0u
h µ

0u
f µ

0u
f df df , dhdhµ

0u
f µ

0u
f µ

0u
f µ

0u
f , µ0u

h dhµ
0u
f µ

0u
f µ

0u
f df ,

µ0u
h dhµ

0u
f df df df , µ0u

h µ
0u
h df df df df anddhdhµ0u

f µ
0u
f df df . Exploiting this feature to gather
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salient terms, the following final expression for the nonlinear polarizability is obtained:

O(5)(ω′′; −ω′′, ω, ω, ω, ω) = 180
E(

E2 − h̄2ω2
)(
E2 − 4h̄2ω2

)(
E2 − 9h̄2ω2

)µ0u
h µ

0u
h µ

0u
f µ

0u
f µ

0u
f µ

0u
f

+(−72)
E
{
124h̄8ω8 + 333h̄6ω6E2 − 156h̄4ω4E4 − 19h̄2ω2E6 + 6E8

}(
E2 − h̄2ω2

)3(
E2 − 4h̄2ω2

)3(
E2 − 9h̄2ω2

)
×µ0u

h µ
0u
h µ

0u
f µ

0u
f df df

+(−24)
E
(
3E2 − 11h̄2ω2

)(
E2 − h̄2ω2

)3(
E2 − 9h̄2ω2

)dhdhµ0u
f µ

0u
f µ

0u
f µ

0u
f

+96

{−6E8 + 106E6ω2 − 555E4ω4 + 339E2ω6 + 1196ω8
}(

E2 − h̄2ω2
)3(
E2 − 4h̄2ω2

)2(
E2 − 9h̄2ω2

)(
E2 − 16h̄2ω2

)µ0u
h dhµ

0u
f µ

0u
f µ

0u
f df

+(−24)

(−2E4 − 25E2h̄2ω2 + 72h̄4ω4
)

E
(
E2 − h̄2ω2

)(
E2 − 4h̄2ω2

)(
E2 − 9h̄2ω2

)(
E2 − 16h̄2ω2

)µ0u
h dhµ

0u
f df df df

+6
1

(E)
(
E2 − h̄2ω2

)(
E2 − 4h̄2ω2

)µ0U
h µ

0U
h df df df df

+18

(
2E2 − 3h̄2ω2

)
E
(
E2 − h̄2ω2

)(
E2 − 4h̄2ω2

)(
E2 − 9h̄2ω2

)dhdhµ0u
f µ

0u
f df df . (3.16)

From this expression it is noticed thatO(5) is proportional to
(
E2− h̄2ω2

)−1
and, therefore, if

the molecular system is near to single-photon resonance,E ∼ h̄ω, all the terms are enhanced.
However, the main resonance contributions are given by the second, third and fourth terms,
which are proportional to0−3. Enhancement also occurs forE ∼ 2h̄ω, E ∼ 3h̄ω, E ∼ 4h̄ω.
In the first (two-photon) case, the main contribution to the nonlinear polarizability is given by
µ0u
h µ

0u
h µ

0u
f µ

0u
f df df . In the other two cases (three- and four-photon resonance) all resonant

terms are inversely proportional to0. Table 7 summarizes the terms which are important in
each case.

Table 7. Dominant terms in resonance six-wave mixing.

Resonance at 0−l

E ∼ h̄ω l = 3 µ0u
h µ

0u
h µ

0u
f µ

0u
f df df ; dhdhµ0u

f µ
0u
f µ

0u
f µ

0u
f ; µ0u

h dhµ
0u
f µ

0u
f µ

0u
f df

l = 1 µ0u
h µ

0u
h µ

0u
f µ

0u
f µ

0u
f µ

0u
f ; µ0u

h dhµ
0u
f df df df ; µ0u

h µ
0u
h df df df df ;

dhdhµ
0u
f µ

0u
f df df

E ∼ 2h̄ω l = 3 µ0u
h µ

0u
h µ

0u
f µ

0u
f df df

l = 2 µ0u
h dhµ

0u
f µ

0u
f µ

0u
f df

l = 1 µ0u
h µ

0u
h µ

0u
f µ

0u
f µ

0u
f µ

0u
f ; µ0u

h dhµ
0u
f df df df ; µ0u

h µ
0u
h df df df df ;

dhdhµ
0u
f µ

0u
f df df

E ∼ 3h̄ω l = 1 µ0u
h µ

0u
h µ

0u
f µ

0u
f µ

0u
f µ

0u
f ; µ0u

h µ
0u
h µ

0u
f µ

0u
f df df ; dhdhµ0u

f µ
0u
f µ

0u
f µ

0u
f ;

µ0u
h dhµ

0u
f µ

0u
f µ

0u
f df ; µ0u

h dhµ
0u
f df df df ; dhdhµ0u

f µ
0u
f df df

E ∼ 4h̄ω l = 1 µ0u
h dhµ

0u
f µ

0u
f µ

0u
f df ; µ0u

h dhµ
0u
f df df df
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4. Discussion

It has been shown in the previous section that by use of the transformed interaction Hamiltonian,
simpler expressions can be found for high orders of the polarizability tensor. These expressions
show the dependence of the optical response on the difference between the permanent dipole
moment of the excited molecular stateu and the ground molecular state 0, characterizing the
associated intramolecular transfer of charge. In general, higher-order processes still present
considerable complexity, which is nonetheless greatly reduced for those cases with a high
degree of degeneracy amongst the optical modes involved. It has also been shown that the
simplest way to obtain the expression for the polarizability tensor given by the transformed
Hamiltonian is by the application of the algorithm given in (3.1). This can be achieved for any
parametricn-photon process as proven in [23].

The broad features of the dependence of the nonlinear polarizability tensor on the
permanent dipole moments and the transition dipole moments can be addressed by introducing
a factorφ defined asφ = |d|∣∣µu0

∣∣−1
, which immediately characterizes the contributions

of the different terms in the response tensor. Firstly, let us analyse the simple expression,
equation (3.2), relating to the four-wave mixing. Forφ � 1, the first term of equation (3.2)
becomes dominant while, ifφ � 1, the second term dominates. It is important to notice that
the difference in magnitude between the two terms is of the order ofφ2, and consequently
it is enough to haveφ ∼ 3, for the first term to become one order of magnitude greater
than the second, frequency factors permitting. In the caseφ ≡ 0, i.e. where no charge
transfer is associated with the optical transition 0→ u, then the nonlinear response remains
finite, because, as in any even-photon process, the nonlinear polarizability has a term which
is independent of permanent dipole moments. Therefore, for the process under consideration,
the nature of the molecular medium determines whether either the first or the second term is
dominant.

In a similar manner, the expression for the nonlinear polarizability tensor for five-wave
mixing can be written and analysed straightforwardly. The general expression, equation (3.4),
shows the dependence of the polarizability on the dipole moments. The first term differs from
the rest byφ2, and will therefore become dominant forφ & 3. Since this is an odd-photon
process, it is forbidden forφ = 0 (all terms are dependent ond). This is a process which very
much depends on a strong charge transfer character to the 0→ u transition. In the specific case
of the five-wave process which represents a higher-order correction to SHG, subsection 3.2.1,
it is seen that not all non-secular enhancements are of the same order of magnitude. For
example, in the single-photon resonance atE ∼ h̄ω, terms which are linearly dependent on
the displacement vectord are also proportional to0−3. Similar remarks can be made about
the six-wave mixing process, where the five terms can be reduced to just one in the special
limits of φ � 1 orφ � 1. This even-photon process will still generate a signal ifφ = 0.

In general, for each nonlinear polarizability contribution, the higher the order of the
inverse proportionality to the linewidth-related factor0, the greater the magnitude of the
corresponding term (since other denominator factors will in general relate to larger electronic
energy differences). The significance of the various forms of dependence on the damping can,
for example, be illustrated by the case of a two-photon resonant five-wave mixing process.
Here, the key contributions to the salient molecular tensor, identified in table 4, reveal that
the l = 2 contributions carry a lower-order dependence ond than thel = 1 terms. Thus,
unlessφ has a value significantly greater than unity, thel = 2 terms will certainly dominate.
If φ is much less than unity, the tenl = 1 terms can effectively be disregarded. Such
factors will therefore be important determinants of five-wave optical nonlinearity in molecular
systems.
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It is clear that the combined effects of resonance conditions and the interplay of
transition/charge transfer dipole moments exercises a considerable effect on the relevance
of the various contributions to the nonlinear optical response. The simple expressions we
have derived for high-order processes can be used to determine the appropriate characteristics
of the nonlinear optical material, which would be necessary to expedite a specific process.
Applications to other parametric processes, where there is a particular interest in the dependence
on the permanent dipole moments and charge transfer characteristics, can be pursued following
the same approach. Although we have limited our interest to those systems with an optical
response governed by only two electronic states, an extension to multi-level systems is already
being developed.

Acknowledgment

LDR gratefully acknowledges the award of a research studentship funded by the University of
East Anglia (UEA).

References

[1] Mukamel S 1995Principles of Nonlinear Optical Spectroscopy(Oxford: Oxford University Press)
[2] Durfee C G III, Backus S, Peatross J, Zeek E, Read K, Weihe F, Murnane M M and Kapteyn H C 1996Ultrafast

Phenomena X(Berlin: Springer) pp 79–80
[3] Sakaguchi H and Nagamura T 1996Ultrafast Phenomena X(Berlin: Springer) pp 209–10
[4] Steffen T and Duppen K 1996Ultrafast Phenomena X(Berlin: Springer) pp 213–4
[5] Dubrovskii A V, Koroteev N I and Shkurinov A P 1992Sov. Phys.–JETP56551
[6] Shkurinov A P, Dubrovskii A V and Koroteev N I 1993Phys. Rev. Lett.701085
[7] Romero L C D, Meech S R and Andrews D L 1997J. Phys. B: At. Mol. Opt. Phys.305609
[8] Fiorini C, Charra F and Nunzi J-M 1994J. Opt. Soc. Am.B 112347
[9] Cho M 1998J. Chem. Phys.1096227

[10] Lin S, Andrews D L, Hands I D and Meech S R 1998Chem. Phys. Lett.285321
[11] Hands I D, Lin S, Meech S R and Andrews D L 1998J. Chem. Phys.10910 580
[12] Tominaga K and Yoshihara K 1995Phys. Rev. Lett.743061
[13] Tominaga K and Yoshihara K 1996J. Chem. Phys.1041159
[14] Tominaga K and Yoshihara K 1996J. Chem. Phys.1044419
[15] Steffen T and Duppen K 1996Phys. Rev. Lett.761224
[16] Steffen T and Duppen K 1997J. Chem. Phys.1063854
[17] Allcock P and Andrews D L 1997J. Phys. B: At. Mol. Opt. Phys.303731
[18] Andrews D L 1994Nonlinear Opt.8 22–5
[19] Meath W J and Power E A 1984J. Phys. B: At. Mol. Phys.17763
[20] Kmetic M A and Meath W J 1990Phys. Rev.A 411556
[21] Andrews D L and Meath W J 1993J. Phys. B: At. Mol. Opt. Phys.264633
[22] Craig D P and Thirunamachandran T 1998Molecular Quantum Electrodynamics: an Introduction to Radiation–

Molecules Interactions(New York: Dover) p 68
[23] Andrews D L, Romero L C D andMeath W J 1999J. Phys. B: At. Mol. Opt. Phys.321
[24] Naguleswaran S and Stedman G E 1996J. Phys. B: At. Mol. Opt. Phys.294027
[25] Andrews D L 1993 Modern nonlinear opticsAdvances in Chemical Physicsvol LXXXV, ed M Evans and

S Kielich (New York: Wiley) pp 580–1
[26] Bishop D M 1994J. Chem. Phys.1006535
[27] Brueckner K A 1955Phys. Rev.10036
[28] Dick B and Hohlneicher G 1982J. Chem. Phys.765755
[29] Kondo A E, Meath W J, Nilar S H and Thakkar A J 1994Chem. Phys.186375
[30] Meath W J and Power E A 1984Mol. Phys.51585
[31] Jagatap B N and Meath W J 1996Chem. Phys. Lett.258293
[32] Andrews D L, Naguleswaran S and Stedman G E 1998Phys. Rev.A 574925


