2,280 research outputs found
Interrelation between microstructure and optical properties of erbium-doped nanocrystalline thin films
Nanocrystalline silicon thin films codoped with erbium, oxygen and hydrogen have been deposited by co-sputtering of Er and Si. Films with different crystallinity, crystallite size and oxygen content have been obtained in order to investigate the effect of the microstructure on the photoluminescence properties. The correlation between the optical properties and microstructural parameters of the films is investigated by spectroscopic ellipsometry. PL response of the discussed structures covers both the visible wavelength range (a crystallite size-dependent photoluminescence detected for 5–6 nm sized nanocrystals embedded in a SiO matrix) and near IR range at 1.54 microm (Er-related PL dominating in the films with 1–3 nm sized Si nanocrystals embedded in a-Si:H). It is demonstrated that the different PL properties can be also discriminated on the basis of ellipsometric spectra
Photoluminescence of nc-Si:Er thin films obtained by physical and chemical vapour deposition techniques: The effects os microstructure and chemical composition
Erbium doped nanocrystalline silicon (nc-Si:Er) thin films were produced by reactive magnetron rf sputtering and by Er ion implantation into chemical vapor deposited Si films. The structure and chemical composition of films obtained by the two approaches were studied by micro-Raman scattering, spectroscopic ellipsometry and Rutherford backscattering techniques. Variation of deposition parameters was used to deposit films with different crystalline fraction and crystallite size. Photoluminescence measurements revealed a correlation between film microstructure and the Er3+ photoluminescence efficiency.FCT Project POCTI/CTM/39395/2001INTAS Project #03-51-648
Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium
The mirror relative motion of a suspended Fabry-Perot cavity is studied in
the frequency range 3-10 Hz. The experimental measurements presented in this
paper, have been performed at the Low Frequency Facility, a high finesse
optical cavity 1 cm long suspended to a mechanical seismic isolation system
identical to that one used in the VIRGO experiment. The measured relative
displacement power spectrum is compatible with a system at thermal equilibrium
within its environmental. In the frequency region above 3 Hz, where seismic
noise contamination is negligible, the measurement distribution is stationary
and Gaussian, as expected for a system at thermal equilibrium. Through a simple
mechanical model it is shown that: applying the fluctuation dissipation theorem
the measured power spectrum is reproduced below 90 Hz and noise induced by
external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte
On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors
In this paper we address both to the problem of identifying the noise Power
Spectral Density of interferometric detectors by parametric techniques and to
the problem of the whitening procedure of the sequence of data. We will
concentrate the study on a Power Spectral Density like the one of the
Italian-French detector VIRGO and we show that with a reasonable finite number
of parameters we succeed in modeling a spectrum like the theoretical one of
VIRGO, reproducing all its features. We propose also the use of adaptive
techniques to identify and to whiten on line the data of interferometric
detectors. We analyze the behavior of the adaptive techniques in the field of
stochastic gradient and in the
Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on
Classical and Quantum Gravit
Dielectric function of nanocrystalline silicon with few nanometers (<3 nm) grain size
The dielectric function of nanocrystalline silicon (nc-Si) with crystallite size in the range of 1 to 3 nm has been determined by spectroscopic ellipsometry in the range of 1.5 to 5.5 eV. ATauc–Lorentz parameterization is used to model the nc-Si optical properties. The nc-Si dielectric function can be used to analyze nondestructively nc-Si thin films where nanocrystallites cannot be detected by x-ray diffraction and Raman spectroscopy
Testing the performance of a blind burst statistic
In this work we estimate the performance of a method for the detection of
burst events in the data produced by interferometric gravitational wave
detectors. We compute the receiver operating characteristics in the specific
case of a simulated noise having the spectral density expected for Virgo, using
test signals taken from a library of possible waveforms emitted during the
collapse of the core of Type II Supernovae.Comment: 8 pages, 6 figures, Talk given at the GWDAW2002 worksho
Double diffractive cross-section measurement in the forward region at LHC
The first double diffractive cross-section measurement in the very forward
region has been carried out by the TOTEM experiment at the LHC with
center-of-mass energy of sqrt(s)=7 TeV. By utilizing the very forward TOTEM
tracking detectors T1 and T2, which extend up to |eta|=6.5, a clean sample of
double diffractive pp events was extracted. From these events, we measured the
cross-section sigma_DD =(116 +- 25) mub for events where both diffractive
systems have 4.7 <|eta|_min < 6.5 .Comment: 5 pages, 1 figure, submitted for publicatio
Noise parametric identification and whitening for LIGO 40-meter interferometer data
We report the analysis we made on data taken by Caltech 40-meter prototype
interferometer to identify the noise power spectral density and to whiten the
sequence of noise. We concentrate our study on data taken in November 1994, in
particular we analyzed two frames of data: the 18nov94.2.frame and the
19nov94.2.frame.
We show that it is possible to whiten these data, to a good degree of
whiteness, using a high order whitening filter. Moreover we can choose to
whiten only restricted band of frequencies around the region we are interested
in, obtaining a higher level of whiteness.Comment: 11 pages, 15 figures, accepted for publication by Physical Review
Reconstruction of the gravitational wave signal during the Virgo science runs and independent validation with a photon calibrator
The Virgo detector is a kilometer-scale interferometer for gravitational wave
detection located near Pisa (Italy). About 13 months of data were accumulated
during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and
September 2011, with increasing sensitivity.
In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the
gravitational wave strain time series from the detector signals is
described. The standard consistency checks of the reconstruction are discussed
and used to estimate the systematic uncertainties of the signal as a
function of frequency. Finally, an independent setup, the photon calibrator, is
described and used to validate the reconstructed signal and the
associated uncertainties.
The uncertainties of the time series are estimated to be 8% in
amplitude. The uncertainty of the phase of is 50 mrad at 10 Hz with a
frequency dependence following a delay of 8 s at high frequency. A bias
lower than and depending on the sky direction of the GW is
also present.Comment: 35 pages, 16 figures. Accepted by CQ
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
- …
