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Abstract. Erbium doped nanocrystalline silicon (nc-Si:Er) thin films were produced by reactive 

magnetron rf sputtering and by Er ion implantation into chemical vapor deposited Si films. The 

structure and chemical composition of films obtained by the two approaches were studied by micro-

Raman scattering, spectroscopic ellipsometry and Rutherford backscattering techniques. Variation of 

deposition parameters was used to deposit films with different crystalline fraction and crystallite size. 

Photoluminescence measurements revealed a correlation between film microstructure and the Er3+ 

photoluminescence efficiency.  
 

Introduction  
Since the discovery of room temperature (RT) photoluminescence (PL) in the visible range from 

porous silicon, research efforts on nanostructured silicon-based materials have been aimed at realizing 

efficient Si-based light emitters. Among the various structures and approaches, erbium (Er) doped 

nanocrystalline silicon, nc-Si, has received great attention in the last ten years [1-3], since evidence 

was reported that nc-Si:Er yields enhanced intra-ionic luminescence and reduced PL thermal 

quenching when compared to crystalline Si [2, 4-6]. However, controversial results have been obtained 

for the Er-related radiative lifetime and quenching mechanisms, as pointed out in ref [7]. Most of the 

previous studies were focused on Si nanocrystals embedded in SiO2, which is transparent in the 
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visible-IR range. Few studies have been reported on the Er3+ PL properties for material containing Si 

nanocrystals embedded in an amorphous silicon matrix with or without oxygen and hydrogen [8]. This 

is the purpose of the present work. 

In this paper, we discuss the dependence of the Er3+ PL on the silicon film microstructure (i.e., 

crystalline fraction and crystallite size) and chemical composition (i.e., hydrogen and oxygen content 

in the silicon network). The erbium doping of the thin films was obtained using two different 

approaches: i) in-situ doping for the sputtered samples, where the crystalline Si target was covered 

with pieces of metallic Er, and ii) Er-implantation for the silicon layers grown by chemical vapour 

deposition, CVD (both hot wire CVD and plasma enhanced CVD).  
 
Experimental details 

The in-situ doped nc-Si:Er thin films were grown in an Ar/H2 atmosphere by radiofrequency (rf) 

magnetron sputtering (physical vapour deposition-PVD) of c-Si target with small pieces of metallic 

erbium added outside the erosion area. Ordinary glass plates were used as substrates. Samples with 

different silicon crystal size and crystalline volume fraction (microstructure) and oxygen and hydrogen 

contents were obtained by changing the rf power and the substrate temperature. More details 

concerning the deposition by sputtering can be found in ref. [9]. 

Another set of samples was deposited by Hot Wire CVD (HWCVD) and Plasma Enhanced CVD (rf-

PECVD) in a ultra high vacuum system with a base pressure ≤ 2.7 x 10-5 Pa on double-polished 

crystalline silicon (c-Si) wafers. For the HW-CVD grown samples, a single tungsten filament of 0.5 

mm in diameter and approximately 14 cm in length was bent to a coil and placed 4 cm from the 

substrate. It was resistively heated with an AC power supply. The filament temperature of 1950 °C was 

measured by a two-colour digital ratio pyrometer and the pressure during deposition was kept constant 

at 2.7 Pa. For the rf-PECVD grown samples, the inter-electrode distance was 3 cm, the density of the rf 

power was 175 mW/cm2 and the pressure was 20 Pa. For both methods, the silane flux, ΦSiH4, was kept 

at 1 sccm and the hydrogen flux, ΦH2, was varied in order to obtain the desired dilution, defined as DH 

= ΦH2 / (ΦH2 + ΦSiH4). 

Hydrogenated amorphous silicon (a-Si:H) films were obtained at 0% H2 dilution by HW and rf-

PECVD, while highly crystalline films (nc-Si:H) were deposited at 96% H2 dilution. After deposition, 

films were implanted with erbium using a beam flux of 1x1014 atm/cm2. Annealing treatments at 375 
oC for 30 min in a nitrogen atmosphere were performed to recover from the implantation damage. 

Thermal annealing can cause different structural and chemical modifications of the samples, including 
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recovering from the implantation damage, atomic diffusion (modification of the O and H profiles), 

atomic rearrangement and crystallization [10-12]. The deposition conditions of all the samples are 

summarized in Table 1. 

Table 1 – Growth conditions for Erbium doped nanocrystalline silicon thin films. DH = ΦH2 / (ΦH2 + ΦSiH4) is the 
hydrogen dilution used for CVD deposition (ΦH2 and ΦSiH4 are the flow rates of H2 and SiH4). RH = pH2/(pH2+pAr) 

= 0.63 was the hydrogen fraction for all the sputtered samples. 
Sample Method Temperature 

(ºC) 
rf power (W) DH 

(%) 
Er34 Sputtering 50 80 - 
P13 Sputtering 150 80 - 
P14 Sputtering 200 80 - 
P15 Sputtering 300 40 - 
P28 Sputtering 150 40 - 
Si35 HW/CVD 220 - 96 
Si36 HW/CVD 220 - 0 
Si37 rf/PECVD 240 5 0 

 
The chemical composition was studied by combining the Rutherford Backscattering Spectroscopy 

(RBS) and Elastic Recoil Detection techniques. The nanocrystal (NC) size and relative fraction of the 

crystalline phase were estimated using the standard procedure based on Raman spectra, transmission 

electron microscopy and X-ray diffraction studies as described in ref [13]. 

Spectroscopic ellipsometry (SE) was applied in order to assess an effective dielectric function of the 

films and through it, to analyze the film microstructure and chemical composition. SE spectra of the 

real, , and imaginary, 2, parts of the complex pseudo dielectric function were measured in the 

0.75 – 5.5 eV energy range using a phase modulated spectroscopic ellipsometer (UVISEL- Jobin 

Yvon) at an angle of incidence of 70°. The spectra were analyzed using models based on the 

Bruggeman effective medium approximation [14] according to the approach reported in ref. [15]. This 

allowed us to estimate the matrix chemical composition, the Er content and the films crystalline 

volume fraction. 

Photoluminescence measurements in the infrared spectral region were performed with a SPEX75 

monochromator. The signal was detected by a germanium detector using the 514.5 nm line of an Ar+ 

laser (laser power on the sample was 150 mW) for the excitation. The Er-related PL was studied in the 

temperature range of 6 – 300 K. 
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Results and discussion 

Table 2 summarizes the Er-content and the Si:O:H ratio for the various samples (oxygen was present at 

a contamination level during the deposition procedure). Films deposited by CVD are characterized by 

low oxygen content whereas the sputtered has resulted in larger oxygen content.  

Figure 1 shows the Raman spectra of films deposited by sputtering (a) and CVD (b). The presence of 

silicon nanocrystals are seen by the appearance of the TO mode characteristic of c-Si (approximately 

520 cm-1). For films deposited by sputtering the crystallinity increases with decreasing the rf power 

and for a fixed rf power the crystallinity increases with the substrate temperature. For films deposited 

by CVD, the microstructure is amorphous for films grown without hydrogen dilution, otherwise the 

microstructure is microcrystalline for 96 % H2 dilution. 

The Er34 sample, has been extensively characterized by transmission electron microscopy (see ref [8]) 

showing a volume fraction of 34% of silicon nanocrystallites with a size <3 nm embedded in an a-Si:H 

matrix. Otherwise, Si36 and Si37 samples, have not silicon crystals. These samples are purely 

hydrogenated amorphous silicon.  

Then, by PVD and CVD we produced three groups of erbium doped silicon samples: (i) one group of 

samples having Si crystal sizes lower than 3 nm (Er34, P13 and P14), (ii) one group of hydrogenated 

amorphous silicon (Si36, Si37) and (iii) other group of bigger crystals size silicon samples (Si35, P15 

and P28). These conclusions based on the X-ray diffraction data correlates with the shape and peak 

position of their Raman spectra (see Fig 1). The estimated values, based on Raman spectra, of the 

crystalline volume fraction, CR, and of the crystallite size, DR, are given in Table 2. 

Table 2 – Atomic concentration and structural parameters: DR - average crystal size by Raman; CR- crystalline 
volume fraction by Raman. 

Sample Er 
(at%) 

Si 
(at%) 

O 
(at%) 

H 
(at%) 

DR 
(nm) 

CR 
(%) 

Er34 0.03 72 <4 27.5 <3 <34 
P13 0.55 70 9 17.7 <3 <34 
P14 1.4 74 14 9 <3 <34 
P15 0.6 65 10 24.9 7 52 
P28 1.8 71 15 11 7.2 41 
Si35 0.04 … <4 8 >8 63 
Si36 1.3 … <4 17 - 0 
Si37 1.3 … <4 20 - 0 
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A deeper insight into film nanostructure has been obtained by the spectroscopic ellipsometry. The 

ellipsometric analysis for the samples P13 and P14 (with O content >9 at.% by RBS) indicates an 

oxygen rich matrix (a-Si:H:O) with a Tauc band gap of 1.96±0.01 eV. The dielectric function derived 

for these a-Si:H:O matrix is compared to that of high density a-Si from CVD (“standard” sample) in 

Fig 2. It shows a shift to higher energy of the fundamental absorption edge and a decrease of the 

amplitude of <2> for our P13 and P14 samples, compared to a “standard” a-Si sample (ref [16]). 

These effects can be due to an inhomogeneous distribution of oxygen and hydrogen. 
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Figure 1 – Raman spectra of films obtained by: (a) Er co-sputtering and (b) HW- and rf-PECVD followed by Er 

implantation.  
 
By ellipsometry, for each group of samples, the main difference between CVD and the sputtered 

samples is the presence in the first one of an amorphous surface layer, probably originated by the 

damage by the Er-implantation, which is not fully recovered by annealing. 

With the aim of investigating how these various microstructures (crystal size, crystalline volume 

fraction and chemical matrix composition) influence the Er3+ photoluminescence, the room 

temperature PL spectra of the studied samples are compared in Fig. 3. All samples exhibit a 

characteristic band with a maximum around 1.535 m, which is attributed to the Er3+ ions. 

Interestingly, the most intense Er3+ PL peak is recorded for the sample with the lowest erbium content 

(Er3+0.03 at.%). Furthermore, the Er3+ PL increases mainly with the decrease of crystallite size, since 
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the Er3+ PL is more intense for the samples having small sized Si nanocrystals (< 3 nm), than for the 

larger sized ones (with average crystal size > 7 nm). From this fact we can infer that the energy transfer 

between nanocrystals and Er3+ ions is more efficient for small nanocrystals. Furthermore the Er3+ PL of 

Si35 (having very low PL intensity-not shown) and Er34 samples, having approximately the same Er 

content, confirms this effect of small sized crystals on the Er excitation efficiency. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Spectra of the real, 1, and imaginary part, 2, of the dielectric function of the a-Si:H:O matrix 

characterizing the Er-doped films P13 and P14 obtained by Er co-sputtering. For comparison the 

dielectric function of a-Si from ref. [16] is also shown. 
 
Interestingly is also to note that the samples having larger size nanocrystals (Si35, P15 and P28) shows 

lower Er3+ PL than the purely amorphous ones (Si36 and Si37). 

Since from the chemical point of view, the oxygen content for Si36 and Si37 (without Si nanocrystals) 

is the same as for Er34 (with Si nanocrystals size < 3 nm), and also the hydrogen content is high in the 

three samples, we infer that the Er3+ PL intensity is mainly affected by the nanocrystal size, rather than 

the Si-O or Si-H environment. Then we can say that the presence of small Si nanocrystals favours the 

energy transfer to the erbium ions. 

If we now analyse the Er3+ PL of the samples with nanocrystals size <3 nm it can inferred that, at room 

temperature, the Er3+ PL is more efficient for samples containing the small size nanocrystallites 

embedded in an a-Si:H matrix (Er34 sample), than when they are embedded in an oxygen rich 

amorphous matrix (a-Si:H:O for P13 and P14 samples), according with the SE results. 
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Figure 3 – Infra Red photoluminescence spectra at room temperature for the studied samples, obtained under 

514.5 nm laser line excitation. (a)- Samples with low silicon crystalline fraction; (b) - samples with 

high crystalline fraction. The implanted samples have been annealed at 375 oC. 
 
It is well known that the excitation cross section of Er3+ ions in crystalline Si is in about 7 orders of 

magnitude higher, than in corresponding amorphous materials [17]. Therefore an increase of the Er3+ 

PL intensity should be expected with the presence of nanocrystals (as observed). On the other hand, the 

sensitization effect of Er3+ by nanocrystals is less pronounced for larger crystallites (as observed) 

because the energy gap lowers with the increase of crystallite size and will not match to the Er3+ 

intracenter transitions. 

It should be mentioned that the Er3+ PL peak for the implanted samples (Si35, Si36, Si37) only appears 

after the annealing treatment at 300oC. The observed PL increase after the annealing could be due to 

either the formation of Si nanocrystals, or disappearance of some structural defects, or exodiffusion of 

hydrogen or oxygen occurring during the process. For the annealing temperature used, and since the 

electrical conductivity of these samples remains (before and after annealing) with typical values of 

amorphous silicon, the most important effect is probably the decrease of the number of defects, and 

consequently, the reduction of non-radiative pathways. 

Figure 4a demonstrates low-temperature Er3+ PL spectra, while Fig. 4b shows the Er3+ PL maximum 

peak intensity as a function of temperature. It should be noted that the sample Si36 shows at low 

temperature (Fig 4a) the most intense Er3+ PL signal, in contrast to RT spectra (Fig 3a). Since this 

sample is purely amorphous (without silicon nanocrystals) then the erbium ions are efficiently excited 

by the amorphous matrix. Furthermore also confirms the presence and role of non-radiative pathways 
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in the decrease of the Er3+ PL with the increase of temperature. 

The temperature dependence of the PL intensity shows two distinct quenching processes and was 

analyzed by the following fit function, assuming a characteristic thermally deactivated excitation 

process, according to [18]: 
 

1
2211 )]/exp()/exp(1)[0()(  kTACkTACITI ,     (1) 

 
where A1 is the deactivation energy for the high temperature range and A2 is the corresponding energy 

for the low temperature region. The coefficients С1 and C2 are the coupling constants and take into 

account the excitation/deactivation processes of Er ions. The fitting parameters used to model 

temperature-dependent Er3+-PL behavior are presented in Table 3, as also the ratio ( R ) between RT 

PL and 10K PL.  

Table 3 – Values of the curve-fitting parameters used to model temperature-dependent Er3+-PL behavior 
with eq. (1) 

Sample C1 A1 (meV) C2 A2 (meV) R* 

Er34 20 91 0.84 8 0.42 
P13 800 125 1.42 6 0.10 
P14 300 108 1.36 5 0.13 
P15 48.8 127 0.72 6 0.50 
P28 28 45 1.36 6 0.16 
Si35 32000 157 2.9 16 0.007 
Si36 18000 153 2.26 8 0.017 
Si37 1400 170 1.14 10 0.037 

 * KIRTIR PLPL 10@@  
 
Different PL behaviour with the change of temperature is observed as can be seen in Table 3.  It is 

visible that both the thermalization energies and the coupling constants are bigger for the CVD 

samples compared with the sputtered ones. The low temperature erbium thermalization energy is 

around 6 meV (between 5 and 8 meV) for the sputtered samples and higher than 8 meV for the CVD 

ones. The high temperature erbium thermalization energy is around 100 meV for the sputtered samples 

and higher than 150 meV for the CVD ones, as shown in Table 3. 
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Figure 4 – (a) Infra Red photoluminescence spectra at 20K for the studied samples. (b) Er3+ PL intensity as a 

function of temperature for the studied samples. 
 

Although the big difference, in the thermalization energy, between the low and high temperature 

ranges, according to the coupling constants values, the de-excitation process responsible for the 

decrease of the Er emission in our samples seems to be the high thermalization energy component, 

independently of the growth method used [18]. 

Furthermore, comparing the Er3+ PL intensity (Fig 4a) and the ratio ( R ) between RT PL and 10K PL, 

it is visible that although the samples purely amorphous (Si36 and Si37) or with small nanocrystals 

(Er34, P13, P14) present a higher efficiency for erbium excitation than the more crystalline ones (P28, 

P15 and Si35), the PL quenching cannot be directly related with crystallinity, as can be seen in Table 3. 

In particular, it is seen that this ratio is less than 4% for the CVD samples, independently either of 

microstrucutre (amorphous or nanocrystalline silicon) and hydrogen content, and higher than 10% for 

the sputtered samples, reaching 42% for Er34 (Si crystal size <3 nm) and 50% P15 (Si crystal size of 7 

nm). Therefore, from these results we can infer that the Er3+ PL is more temperature stable for the 

samples synthesized by Er co-sputtering than for the Er-implantation. This can be due to the residual 

implantation damage still present in the CVD films even after the annealing treatment at 375 oC. 

The highest ratio, R, was obtained for sputtered samples with high hydrogen content (low crystal size –

Er34 or high crystal size – P15), then we can conclude that hydrogen plays an important role in the PL 

behaviour with temperature. The beneficial role of hydrogen in improving optical and electrical quality 

of amorphous silicon films is well known due to passivation of silicon dangling bonds (DB’s). For 

these samples having silicon nanocrystals, the defects, in particular the DB`s, are located in the 

amorphous matrix, where the NC´s are embedded, and at the grain boundaries. The role of atomic 
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hydrogen in these films is to saturate both types of DB’s and to passivate other defects, therefore 

reducing the presence of non-radiative recombination pathways. 

Therefore, from these results we can infer that, although the more crystalline samples present a less 

efficient erbium excitation (Fig 3), the PL quenching magnitude can not be related with the size of the 

Si crystals, but seems to be related with the presence of hydrogen. 
 

Summary and conclusions  

In summary, Er-doped nanocrystalline silicon thin films have been synthesized by reactive magnetron 

rf sputtering and by implantation of HW and rf-PECVD silicon films. Films with different crystalline 

fraction and crystal size (ranging from <3 nm to >8 nm) and with various oxygen and hydrogen 

contents have been obtained by changing the deposition parameters. The influence of silicon crystal 

size and matrix chemical composition on the Er3+ PL efficiency has been investigated. In particular, 

ours results show the following: (i) the Er3+ PL peak is more intense for the sample with the lowest 

erbium content (Er3+0.03at.%); (ii) the Er3+ PL is more efficient for samples with small size 

nanocrystallites embedded in an a-Si:H matrix; (iii) the PL quenching magnitude can not be related 

with the size of the Si crystals, but seems to be related with the presence of hydrogen; (iv) the Er3+ PL 

is more temperature stable for the samples synthesized by Er co-sputtering than for the Er-implanted 

ones. 
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