6,034 research outputs found

    Food for Thought: Genetically Modified Seeds as De Facto Standard Essential Patents

    Get PDF
    For several years, courts have been improperly calculating damages in cases involving the unlicensed use of genetically-modified (GM) seed technology. In particular, when courts determine patent damages based on the hypothetical negotiation method, they err in exaggerating these damages to a point where no rational negotiator would agree. In response, we propose a limited affirmative defense of an implied license due to the patent’s status as a de facto standard essential patent. To be classified as a de facto standard essential patent, the farmer must prove three elements that reflect the peculiarities of GM seeds used in farming: (1) dominance, (2) impracticability, and (3) necessary to fulfill a basic need. Based on the approaches used by courts and standard setting organizations in licensing standard essential patents in technological fields such as cell phones and software, designation of some GM seeds as standard essential patents allows the courts to imply a license from patentees to farmers on reasonable and non-discriminatory (RAND) terms. Doing so shifts the case from a tort-based patent infringement suit to a breach of contract dispute and alters the damages regime from one based in compensation, deterrence, and punishment (a tort approach) to one based solely in compensation (a contractual approach). As a result of this novel proposal, the damages calculations in these suits return to economic reality

    Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 1: Analysis and design of stages A, B, and C

    Get PDF
    A conventional rotor and stator, two dual-airfoil tandem rotors, and one dual-airfoil tandem stator were designed. The two tandem rotors were each designed with different percentages of the overall lift produced by the front airfoil. Velocity diagrams and blade leading and trailing edge metal angles selected for the conventional rotor and stator blading were used in the design of the tandem blading. Rotor inlet hub/tip ratio was 0.8. Design values of rotor tip velocity and stage pressure ratio were 757 ft/sec and 1.30, respectively

    In-plane structure and ordering at liquid sodium surfaces and interfaces from ab initio molecular dynamics

    Full text link
    Atoms at liquid metal surfaces are known to form layers parallel to the surface. We analyze the two-dimensional arrangement of atoms within such layers at the surface of liquid sodium, using ab initio molecular dynamics (MD) simulations based on density functional theory. Nearest neighbor distributions at the surface indicate mostly 5-fold coordination, though there are noticeable fractions of 4-fold and 6-fold coordinated atoms. Bond angle distributions suggest a movement toward the angles corresponding to a six-fold coordinated hexagonal arrangement of the atoms as the temperature is decreased towards the solidification point. We rationalize these results with a distorted hexagonal order at the surface, showing a mixture of regions of five and six-fold coordination. The liquid surface results are compared with classical MD simulations of the liquid surface, with similar effects appearing, and with ab initio MD simulations for a model solid-liquid interface, where a pronounced shift towards hexagonal ordering is observed as the temperature is lowered

    Post-copulatory opportunities for sperm competition and cryptic female choice provide no offspring fitness benefits in externally fertilizing salmon

    Get PDF
    There is increasing evidence that females can somehow improve their offspring fitness by mating with multiple males, but we understand little about the exact stage(s) at which such benefits are gained. Here, we measure whether offspring fitness is influenced by mechanisms operating solely between sperm and egg. Using externally-fertilising and polyandrous Atlantic salmon (Salmo salar), we employed split-clutch and split-ejaculate in vitro fertilisation experiments to generate offspring using designs that either denied or applied opportunities for sperm competition and cryptic female choice. Following fertilisations, we measured 140 days of offspring fitness after hatch, through growth and survival in hatchery and near-natural conditions. Despite an average composite mortality of 61%, offspring fitness at every life stage was near-identical between groups fertilised under the absence versus presence of opportunities for sperm competition and cryptic female choice. Of the 21,551 and 21,771 eggs from 24 females fertilised under monandrous versus polyandrous conditions, 68% versus 67.8% survived to the 100-day juvenile stage; sub-samples showed similar hatching success (73.1% versus 74.3%), had similar survival over 40 days in near-natural streams (57.3% versus 56.2%), and grew at similar rates throughout. We therefore found no evidence that gamete-specific interactions allow offspring fitness benefits when polyandrous fertilisation conditions provide opportunities for sperm competition and cryptic female choice

    Advanced Modular Power System Electronics Enclosure Thermal Testing

    Get PDF
    An analysis was set up to model the temperature of the advanced modular power system (AMPS) power distribution cards when installed within the electronics enclosure case. The analysis was used to determine the steady-state temperature distribution of the cards within the case. To verify the analysis, an experiment was set up and conducted to simulate the operation of the cards within the enclosure. Four tests were conducted. The tests varied the position of the cold plate and evaluated the use of a thermal compound to reduce the contact resistance between the joints within the thermal path between the cards and the cold plate. Three of the four cases examined showed very good agreement between the analysis and the experiment with a less than 1-percent variation in the predicated temperatures determined through the analysis and the experimentally derived temperatures. In the remaining case, the difference between the analysis and experiment was approximately 12 percent. Both the experiment and analysis showed that the modular power conditioning cards can be maintained within their desired maximum operating temperature range of 40 to 45 C through thermal conduction to a cold plate when operating with their estimated maximum heat output of 16 W per card

    Cryptic choice of conspecific sperm controlled by the impact of ovarian fluid on sperm swimming behavior

    Get PDF
    Despite evidence that variation in male–female reproductive compatibility exists in many fertilization systems, identifying mechanisms of cryptic female choice at the gamete level has been a challenge. Here, under risks of genetic incompatibility through hybridization, we show how salmon and trout eggs promote fertilization by conspecific sperm. Using in vitro fertilization experiments that replicate the gametic microenvironment, we find complete interfertility between both species. However, if either species’ ova were presented with equivalent numbers of both sperm types, conspecific sperm gained fertilization precedence. Surprisingly, the species’ identity of the eggs did not explain this cryptic female choice, which instead was primarily controlled by conspecific ovarian fluid, a semiviscous, protein-rich solution that bathes the eggs and is released at spawning. Video analyses revealed that ovarian fluid doubled sperm motile life span and straightened swimming trajectory, behaviors allowing chemoattraction up a concentration gradient. To confirm chemoattraction, cell migration tests through membranes containing pores that approximated to the egg micropyle showed that conspecific ovarian fluid attracted many more spermatozoa through the membrane, compared with heterospecific fluid or water. These combined findings together identify how cryptic female choice can evolve at the gamete level and promote reproductive isolation, mediated by a specific chemoattractive influence of ovarian fluid on sperm swimming behavior

    The Calibration of the WISE W1 and W2 Tully-Fisher Relation

    Get PDF
    In order to explore local large-scale structures and velocity fields, accurate galaxy distance measures are needed. We now extend the well-tested recipe for calibrating the correlation between galaxy rotation rates and luminosities -- capable of providing such distance measures -- to the all-sky, space-based imaging data from the Wide-field Infrared Survey Explorer (WISE) W1 (3.4μ3.4\mum) and W2 (4.6μ4.6\mum) filters. We find a linewidth to absolute magnitude correlation (known as the Tully-Fisher Relation, TFR) of MW1b,i,k,a=20.359.56(logWmxi2.5)\mathcal{M}^{b,i,k,a}_{W1} = -20.35 - 9.56 (\log W^i_{mx} - 2.5) (0.54 magnitudes rms) and MW2b,i,k,a=19.769.74(logWmxi2.5)\mathcal{M}^{b,i,k,a}_{W2} = -19.76 - 9.74 (\log W^i_{mx} - 2.5) (0.56 magnitudes rms) from 310 galaxies in 13 clusters. We update the I-band TFR using a sample 9% larger than in Tully & Courtois (2012). We derive MIb,i,k=21.348.95(logWmxi2.5)\mathcal{M}^{b,i,k}_I = -21.34 - 8.95 (\log W^i_{mx} - 2.5) (0.46 magnitudes rms). The WISE TFRs show evidence of curvature. Quadratic fits give MW1b,i,k,a=20.488.36(logWmxi2.5)+3.60(logWmxi2.5)2\mathcal{M}^{b,i,k,a}_{W1} = -20.48 - 8.36 (\log W^i_{mx} - 2.5) + 3.60 (\log W^i_{mx} - 2.5)^2 (0.52 magnitudes rms) and MW2b,i,k,a=19.918.40(logWmxi2.5)+4.32(logWmxi2.5)2\mathcal{M}^{b,i,k,a}_{W2} = -19.91 - 8.40 (\log W^i_{mx} - 2.5) + 4.32 (\log W^i_{mx} - 2.5)^2 (0.55 magnitudes rms). We apply an I-band -- WISE color correction to lower the scatter and derive MCW1=20.229.12(logWmxi2.5)\mathcal{M}_{C_{W1}} = -20.22 - 9.12 (\log W^i_{mx} - 2.5) and MCW2=19.639.11(logWmxi2.5)\mathcal{M}_{C_{W2}} = -19.63 - 9.11 (\log W^i_{mx} - 2.5) (both 0.46 magnitudes rms). Using our three independent TFRs (W1 curved, W2 curved and I-band), we calibrate the UNION2 supernova Type Ia sample distance scale and derive H0=74.4±1.4H_0 = 74.4 \pm 1.4(stat) ± 2.4\pm\ 2.4(sys) kms1^{-1} Mpc1^{-1} with 4% total error.Comment: 22 page, 21 figures, accepted to ApJ, Table 1 data at http://spartan.srl.caltech.edu/~neill/tfwisecal/table1.tx

    Pseudorandom Number Generators and the Square Site Percolation Threshold

    Full text link
    A select collection of pseudorandom number generators is applied to a Monte Carlo study of the two dimensional square site percolation model. A generator suitable for high precision calculations is identified from an application specific test of randomness. After extended computation and analysis, an ostensibly reliable value of pc = 0.59274598(4) is obtained for the percolation threshold.Comment: 11 pages, 6 figure
    corecore