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SUMMARY

A rotor and stator having conventional blading, and two rotors and a stator
having tandem blading (comprised of two airfoils in tandem), were designed for
a comparative experimental evaluation in an 0. 8 hub/tip ratio single-stage com-
pressor. Velocity diagrams and blade leading and trailing edge metal angles
selected for the conventional rotor and stator blading were used in the design
of the tandem blading.

The tandem-blade rotors differed by the loading split between the two
airfoils in tandem. Loading was defined as the tangential lift produced by the
airfoil. Therefore, a 20%-80% loading split indicated that 20% of the overall
tangential lift would be produced by the front airfoil. One rotor was designed
with a 20%-80% loading split, and the other rotor was designed with a 50%-50%
loading split. The tandem-blade stator, intended for use behind each of the
tandem-blade rotors, was designed with a 20%-80% loading split.

The rotors were designed to produce a pressure ratio of 1.32 at a rotor
tip velocity of 757 ft/sec. The design stage pressure ratio was 1.30. The
predicted rotor and stage adiabatic efficiencies were 90.8% and 85. 4%,
respectively.

Stress analyses were performed for the selected blading. These included
analysis of blade attachment and disk stresses, vibratory stresses, and flutter,
Materials that would provide adequate stress margins were selected for blade
fabrication.

INTRODUCTION

Advanced aircraft turbojet propulsion systems will require lightweight,
highly loaded :xial flow compressors capab.2 of achieving high efficiency over
a wide range of operating conditions. Axial flow blower experience has indicated
that tandem blading can be successfully employed to extend the efficient operating
range of compressors. In 1955, H. F. Sheets (Reference 1) reported excellent
efficiencies for a highly loaded axial flow blower comprised of a tandem-blade
rotor. More recently, favorable results were reported by H. Linnemann
(Reference 2) based on a series of axial flow blower tests involving both tandem-
blade rotors and stators. The results for the tandem bilading indicated a better
efficiency at a higher pressure ratio than that achieved with equivalent conventional
blading.

In principle, tandem blading offers improved performance over conventional
blading by distributing the overall blade row aerodynamic loading between the air-
foils in tandem. The front airfoil may also provide control of the inlet air angle
to the rear airfoil at off-design conditions, which should reduce the overall
total pressure loss and possibly delay wall stall,

The first objective of this program is to investigate the potential of tandem
blading for extending the loading limit and stable operating range of a stage
representative of a middle stage of an advanced high pressure compressor.

The second objective is to determine the effect, if any, of loading split on the
performance of tandem blading. The aerodynamic and mechanical design of a



conventional rotor and stator, two dual-airfoil tandem rotors with differing
loading splits, and a dual-airfoil tandem stator are the subjects of this report.
The corn.ventional single airfoil rotor and stator have been designated Rotor A
and Stator A. One tandem-blade rotor with decreased loading on the front
airfoil and increased loading on the rear airfoil has been designated Rotor B,
and the other tandem-blade rotor with equal loading on each airfoil has been
designated Rotor C. The tandem-blade stator, intended for use behind each

of the tandem-blade rotors, has been designated Stator B and is designed for
decreased loading on the front airfoil and increased loading on the rear airfoil,

DESIGN VECTOR DIAGRAMS

The selection of the design vector diagrams was accomplished within the
range of the design guidelines given in table I.

Table I. Design Guidelines

Rotor Tip Diameter 30 in, (minimum)
Hub-Tip Ratio 0.7t00.8

Rotor Tip Speed 800 fps (maximum)
Rotor I'ip Diffusion Factor Less than 0.55
Rotor Tip Solidity 1.4 to 1.5

Stator Hub Diffusion Factor Less than 0. 60
Stator Hub Solidity 1.5 or greater

In addition to the guidelines specified in table I, the following criteria were
specified for the design:

1. No inlet guide vanes (axial inlet flow)

2. Constant rotor exit total pressure

3. Axial stator discharge flow

4, Common flowpath geometries for all stages
5.

Double circular arc blade sections.

Tc ensure a valid comparison between the conventional Stage A and the tandem-
blade stages, the vector diagrams selected for Rotor and Stator A were used
to design the tandem blading.

The initial phase of the design was the correlation of loss data from
NASA-sponsored programs (References 3 to 10). Loss parameter and diffusion
factor data for rotors and stators were plotted for three span locations (10, 50,
and 90% span). Although the data from References 3 through 10 are for Series 65
blade sections, the data presented in Reference 11 indicate that a single correlation
of loss parameter vs diffusion factor can be used for both Series 65 and double-
circular-arc blade sections, Minimum loss data were used whenever a minimum
value was clearly defined. Where a minimum loss was not clearly defined, the
point corresponding to the midpoint of incidence angles tested was selected.

2



A design curve was selected to represent the data at each percent span. Cross-
plcts were made of loss parameter vs percent span at constant diffusion factor
values of 0.4, 0.5, and 0.6 to check the spanwise loss gradient at constant
diffusion factor. The selected design loss curves «.'‘e shown in figures 1
through 6. The two-dimensional cascade data from figure 149 of Reference 11
and the range of compressor data shown in figure 192 of Reference 11 are shown
for comparison with the selected loss curves.

The vector diagrams were selected by means of an iteration using an
arisymmetric flow field calculation and the loss correlations shown in figures 1
through 6. The calculation procedure solved the continuity, energy, and radial
equilibrium equations, which included the effects of streamline curvature and
radial gradients of enthalpy and entropy.

The flowpath used for this investigation is shown in figure 7. The flow-
path selection was governed by existing hardware. For the design vector
diagram calculations, blockage allowances of 2%, 5%, and 5% of local annulus
area were assumed at the rotor inlet, rotor exit, and stator exit, respec-
tively, to account for boundary layer growth on the flowpath walls. A rotor tip
inlet Mach number of 0. 8 and a specific flow of 33 1b/sec-ft2 were selected to be
generally representative of current design practice for compressor middle
stages. A summary of the vector diagram calculation results along the design
streamlines, which were selected to pass through 5, 10, 15, 30, 50, 70, 85,
90, and 95% span at the rotor exit instrumentation station, is presented in
tables IIa and IIb for the rotors and stators, respectively. The diffusion factor,
loss coefficient, and exit total pressure distributions are also presented in
figures 8 through 10. The predicted rotor pressurc ratio and adiabatic efficiency
are 1.32 and 90. 8%, respectively, at a design rotor tip speed of 757 ft/sec.

The predicted pressure ratio and efficiency for the stage at design rotor speed
are 1.30 and 85.4%, respectively.
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AIRFOIL GEOMETRY SELECTION
Stage A

Double circular-arc constant chord length airfoils were selected for the
rotor and stator. A design thickness-to-chord ratio distribution was selected
consistent with current design practice, and the rotor tip and stator hub chord
lengths, number of blades, and number of vanes were selected to satisfy the
2olidity requirements of table I.

Airfoil camber, incidence, and deviation angles were calculated along
design streamlines for the rotor and stator using equations 286, 287, and 288
presented in Reference 11, except that the three-dimensional corrections for
incidence and deviation angles were omitted. The double circular arc airfoil
sections selected for the rotor and stator were positioned on planes tangent to
conic surfaces, which approximated design streamlines of revolution. The
rotor and stator geometry on planes tangent to these conic surfaces is sum-
marized in table III. The resultant radial distributions of airfoil camber,
incidence, and deviation angles are shown in figures 11 through 14. For manu-
facturing purposes, the selected airfoil sections were redefined on planes
tangent to cylindrical surfaces by simply rotating the sections about an axis.
This axis was defined by the intersection of two planes: one plane tangent to
the cylindrical surface and the second plane normal to the compressor center-
line. This second plane was located midway between the blade row leading
and trailing edges. The rotated airfoil sections for Rotor A were further
positioned so that their centers of gravity were on a radial line. The rotated
airfoil sections for Stator A were further positioned so that the center points
of the trailing edge radii were on a radial line. The simplified method of
rotating the selected airfoil sections onto planes tangent to cylindrical surfaces
results in blade geometry that is slightly different than the design intent,
However, because the cone angles are small (see a in table II), it was concluded
that the geometry differences would be small. A comparison of the radial dis-
tributions of the design inlet and exit zirfoil angles and the airfoil angle distri-
butions that resulted after the airfoil sections were rotated are shown for the
rotors and stators in figures 15 through 18. As shown in figures 15 through 18,
the maximum difference between the actual design airfoil angles and the air-
foil angles that resulted when the airfoil sections were rotated onto planes
tangent to cylindrical surfaces was less than 1 deg. Since 1 deg is of the same
order of magnitude as the manufacturing tolerance for the required airfoils,
the airfoil geometry defined using the simplified technique was considered adequate.
However, prior to accepting the resulting airfoil geometry, the ratio of maximum
suction surface velocity to exit velocity was estimated for the hub, mean, and
tip sections of the rotor and stator to ensure that they were not significantly
greater than 2,0, According to the results presented in Reference 12, a velocity
ratio in excess of 2.0 may lead to a possible rapid increase in the airfoil bound-
ary layer momentum thickness with a corresponding increase in oss.

The surface velocity distributions were estimated for the rotated airfoil
sections assuming two-dimensional, incompressible, inviscid potential flow,
The potential flow solution involved a computer program that calculated the
velocity field of an infinite cascade as governed by Laplace's equation:

veo=0
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where ¢ is the velocity potential. Solutions were obtained for zero angle of attack,
90 deg angle of attack, and circulatory flow and the results superimposed in
such a way that the correct angle of attack was obtained and the Kutta condition
satisfied. The method of solution, described in Reference 13, utilizes a
distribution of sources on the airfoil surface and solves a set of linear algebraic
equations for the source distribution that forces the total velocity normal to

the airfoil surface to be zero. The total velocity is the sum of two velocities:
the onset velocity, defined as the velocity field in which the body is immersed
and the disturbance velocity, defined as the velocity field caused by the source
distribution. The velocity distributions thus obtained were corrected for
compressibi tv by means of the Karman-Tsien equation, and the results are
shown in figures 19 through 24 for the hub, mean, and tip sections of the rotor
and stator.

As shown in figures 19 through 24, the mean exit velocity for the potential
flow calculations is lower than the exit velocity for the vector diagram calcula-
tions. This difference in the exit velocities results because the potential flow
solution did not consider (1) the change in the streamtube radius through the
blade row, (2) the convergence in the streamtube area through the blade row,
and (3) the small differences in ir.cidence and deviation angle resulting from
the rotation of the airfoil sections (as described above). The radius change
and streamtube convergence are associated with the flowpath shape and the
blade total pressure losses. Prior to calculating the ratio of the maximum
suction surface velocity to exit velocity, the maximum velocity on the suction
surface was increased to reflect the convergence in the streamtube area through
the blade row. The amount of increase was the local difference between linear
distributions of velocity from the inlet value to the exit values obtained from
(1) the vector diagram calculations and (2) the potential flow calculations, as
illustrated in figures 19 through 24. The local correction applied as described
above is indicated as LC on each figure. The velocity ratio of interest was the
corrected maximum suction surface velocity divided by the exit velocity obtained
in the vector diagram calculations. Velocity ratios calculated in this manner
were compared with the results obtained for the same blade geometries using
the NASA compressible flow solution that assumes that the streamtube area
converges linearly through the blade row (Reference 14); very good agreement
was obtained. The aforementioned technique for correcting the maximum suction
surface velocities for compressibility and streamtube convergence was therefoie
considered valid. The resulting velocity ratios for the rotor and stator are
shown in table IV,

Table IV. Velocity Ratios (Ymax/" te)

Percent Span From Tip Rotor A Stator A
5 1.96 1,77
50 1,94 1,79
95 2.10 1. 88




The velocity ratio slightly in excess of 2,0 for Rotor A at 95% span is not
considered detrimental to the stage design since a rotor diffusion factor level
of 0.5533, shown in table Ila for 95% span, is considered reasonable for an
advanced compressor design. Tnherefore, the rotor and stator airfoil geometry
that resulted by rotating airfoil sections defined on planes tangent to the conic
(table III) to planes tangent to a cylindrical surface and the associated radial
distributions of incidence and deviation angles were considered satisfactory.

Tandem-Blade Stages B3 and C

In keeping with the program objectives, airfoil geometry was selected for
the first tandem rotor and stator, designated Rotor B and Stator B, so that
the fiont airfoil would be more lightly loaded than the rear airfoil. For the
second tandem rotor, designated Rotor C, airfoil geometry was selected so
that an approximately equal distribution of loading occurred between the front
and rear airfoils. It was decided that a second tandem stator would not be
designed, but that tandem Rotor C would be tested with Stator B. The airfoil
geometry for each tandem blade row was selected to satisfy the overall vector
diagram requirements given in table II.

To ensure interchangeability with Stage A, the radial distributions of
overall axial chord (figure 25) were maintained equal to the distribution selected
for the Stage A blading. To minimize the number of variables to be investigated
in selecting tandem airfoil geometry, the individua: airfoil maximum thickness-
to-chord ratio for each of the airfoils of the tandem blading was also maintained
equal to the value selected for the Stage A blading. Double circular-arc sections
were selected for both airfoils of the tandem blading to be consistent with an
in-house analytical study conducted for NASA-Lewis Research Center (Refer-
ence 15). The individual chords for the tandem blades were arbitrarily set
equal and the individual airfoils were defined on planes tangent to a cylindrical
surface and positioned according to the following criteria.

1.. The leading edge airfoil angle of the front airfoil and the
trailing edge airfoil angle for the rear airfoil were main-
tained equal to the leading and trailing edge airfoil angles,
respectively, selected for Stage A.

2. The passage width between the blades was maintained at
approximately 10% of the front airfoil chord. This selection
was based on the results of a NASA in-house analytical study
of tandem blading described in Reference 15.

3. Zero axial overlap of the front and rear airfoils was main-
tained for ease of fabrication; however, this selection is
consistent with the cascade results presented in Reference 16
and the rotor results in Reference 2, and yielded a blade
passage area ratio in the same range indicated as favorable
in the NASA studies (Reference 15).



For Rotors B and C, the tandem airfoil sections were stacked radially so
that the centers of gravity of the combined sections were on a radial line. For
Stator B, the airfoil sections were stacked radially so that the center points
of the trailing edge radii of the rear airfoil were on a radial line.

The selection of the front and rear airfoil camber angles was accomplished
in two steps. The first step involved an iterative process, using the potential
flow calculation procedure described on pages 6 and 8, to select the front
and rear airfoil camber angles that satisfied the loading split and maximum
suction surface-to-exit velocity ratio requirements given in table V.

Table V. Design Requirements for Rotor B, Stator B, and Rotor C

Blade Row Design Requirements

Rotor B Maximum differential in loading
between the front and rear airfoils
without exceeding a rear airfoil
suction surface maximum-to-exit
velocity ratio of 1.9,

Stator B Maximum differential in loading
between the front and rear airfoils
without exceeding a rear airfoil
suction surface maximum-to-exit
velocity ratio of 1.8,

Rotor Approximately an equal distribution
of loading between the front and
rear airfoils,

The second step involved checking the results of the potential flow analysis
using the independent axisymmetric flow field calculation procedure discussed
on page 3. This check was made to determine if the potential flow solution
(which used a generalized compressibility correction and did not account for
total pressure losses, streamtube radius changes, or streamtube convergence)
accurately predicted the loading split between the two airfoils in tandem. A
detailed description of the two steps used in the airfoil geometry selection
procedure is included in the following paragraphs.

Step 1

The following iterative process was used during the first step of the design
procedure to select the front and rear airfoil camber angles at 5, 25, 50, 75,
and 95% span:

1. Initial values of camber angle were assumed for the front and
rear airfoils, These camber angles were selected so that the
passage between the blades would be slightly convergent (inlet-
to-exit area ratio greater than one), thus avoiding undue velocity
peaks or deceleration in the passage between the airfoils.

10



2. Blade surface pressure and velocity distributions were calculated
by means of the technique described on pages 6 and 8.

3. The areas enclosed by surface pressure distributions were integrated
to determine the loading (tangential lift) split between the two air-
foils in tandem. The surface pressure distributions were corrected
for compressibility; however, no corrections for streamtube radius
changes or convergence through the blade row were applied.

4, The maximum suction surface-to-exit velocity ratio for each air-
foil was calculated. The maximum suction surface velocity included
the corrections for compressibility, streamtube convergence, etc.,
as discussed on page 8,

5. The loading split between the front and rear airfoils and the maximum
suction surface-to-exit velocity ratio were compared to the design
requirements given in table V,

6. If the design requirements were not satisfied, the camber angles
were changed and the procedure repeated until the desired blade
surface velocity ratio and loading split were obtained.

Step 2

The second step in the airfoil geometry selection procedure was to check
the results of the potential flow analysis by using an independent axisyi:metric
flow field analysis similar to that used for the selection of the vector diagrams
(page 3). As previously stated, this check was made to determine if the
potential fiow solution resulted in an accurate prediction of the loading split
and therefore the energy input distribution through the blade row. The initial
results of axisymmetric flow analysis showed a shift in the loading (relative to
that calculated by the potential flow analysis) to the rear airfoil. In fact, the
front airfoil of Rotor B had a pressure ratio of less than one and a diffusion
factor of less than zero. This loading shift and reduced front airfoil lcading
were attributed to the acceleration (i.e., Vzte/Vzle >1.0) of the flow through
the front blade row that resulted from the combination of the reduced energy
input and the wall convergence through the blade row. However, this analysis
treated the front and rear airfoils as independent blade rows and neglected
any effect that the pressure distribution around the rear airfoil might have on
the front airfoil turning.

To obtain an understanding of the front and rear airfoil-to-airfoil inter-
actions when accompanied by acceleration of the flow through the blade row,
the axisymmetric flow calculation procedure was used to calculate (1) the ratio
of the change in the meanline tangential velocity through the front airfoil to the
total change in the meanline tangential velocity across the blade row and (2) the
front airfoil pressure ratio as a function of front airfoil camber and deviation
angle. During this analysis, the radial distribution of the front airfoil camber
angle selected for Rotor B was maintained, and the level adjusted by a constant
value across the entire span to provide the desired camber angle at midspan.
Since the spanwise variation in front airfoil camber angle for Rotors B and C
was less than 4 deg, camber distribution should have a very small effect on
calculated change in meanline tangential velocity through the front airfoil, and

11



the results should be valid for both Rotors B and C. The camber angle for

the rear airfoil was not varied during this analysis because the axisymmetric flow
calculation procedure treats the front and rear airfoils as independent blade
rows. If the small changes in streamtube radius through the blade row are
neglected anad the flow is assumed to be steady, Newton's law of motion can be
used to show that the ratio of change in tangential velocity through the front
airfoil to the total change in tangential velocity is equal to the percentage of
overall tangential lift produced by the front airfoil. The change in “angential
velocity across the tandem blade rows was assumed equal to the change in
tangential velocity across Rotor A because all three rotors were designed to
produce identical inlet and exit vector diagrams. The results of the study to
estimate front and rear airfoil-to~airfoil interactions in terms of (1) percentage
of overall tangential lift produced by the front airfoil and (2) front airfoil
pressure ratio as functions of front airfoil camber angle for three values of
percent cascade deviation angle are shown in figure 26.

The axisymmetric flow field analysis assuming 50% cascade deviation at
midsprn was chosen for selection of the final camber angles for the front air-
foils of Rotors B and C. This technique was selected as it attempts tc account
for both front and rear airfoil-to-airfoil interaction and acceleration of the
flow through the blade row. The potential flow analysis performed during step 1
of the airfoil selection process indicated that a 20%-80% loading split between
the front and rear airfoil could be achieved for Rotor B without exceeding the
velocity ratio requirements. A front camber angle of 5 deg was indicated for
this analysis. Using a 20%-80% loading split and 50% cascade de.:ation, the
axisymmetric flow analysis indicates 6. 6 deg of camber rcquired in the front
airfoil at the meanline. Thus, the camber angle of Rotor B was increased
1. 6 deg across the entire span. The rear airfoil camber angle for Rotor B
was decreased so that the passage between the blades would be slightly convergent
when the two airfoils were positioned with a zero axial overlap and a interblade
passage width of approximately 10% of front airfoil chord. The leading edge
airfoil angle for the front airfoil and the trailing edge airfoil angle for the rear
airfoil were not changed since these values were initially selected to be equal
to the 1¢ ding and trailing edge airfoil angles, respectively, of Rotor A. The
final Rotor B front and rear airfoil camber distributions and the camber dis-
tributions selected from the potential flow analysis are compared in figure 27.

The potential flow and axisymmetric analysis indicated 12, 0 deg and 12.5 deg,
respectively, for Rotor C front airfoil camber angle. Since the 0.5 deg difference
is withir the accuracy of the calculation techniques, the camber angles far Rotor C
were no: changed. The Rotor C front and rear airfoil camber angle distributions
are prescnted in figure 28.

As a result of the axisymmetric flow calculations for Rotor B, Stator B
was also processed through the axisymmetric flow calculation procedure to
determine a loading split based on the ratio of the change in the meanline
tangential velocity through the front airfoil to the total change in the meanline
tangential velociiy across the blade row. The results of this analysis are pre-
sented in terms of the percentage of the overall tangential lift produced by the
front airfoil vs percent cascade deviation angle for the front airfoil in figure 29,
As indicated, if it is again assumed that the front airfoil deviation angle will be
reduced by 50% because of the rear airfoil pressure distribution, the resulting
loading split between the front and rear airfoils is 20%-80%. Although this
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loading split is significantly different from th2 30%-70% loading split calculated
from the results of the potential flow analysis, the camber for Stator B was not
changed since the primary design requirement for Stator B was to obtain the
maximum differential in loading between the front and rear airfoils without
exceeding a rear airfoil maximum suction surface-to-exit velocity ratio of 1. 8.
The tator B spanwise camber distribution is shown in figure 30.

The Rotor B, Rotor C, and Stator P airfoil geometries are summarized in
table VI. The chord lengths calculated for the front and rear airfoils of Rotor B,
Rotor C, and Stator B actually varied slightly from hub to tip. However, since
the variation in chord length was less than 3% of the individual airfoil chord,
the average value was selected and assumed not to vary with radius.

The loading splits, camber ratios, airfoil maximum suction surface-to-exit
velocity ratios, blade passage overlaps, blade passage gaps, and blade passage
convergences are given in table VII for the final selected tandem-airfoil configura-
tions at 5, 25, 50, 75, and 95% span. The blade surface static pressure coef-
ficient distributions and the corrected maximum suction surface velocities used
to calculate loading splits and maximum suction surface-to-exit velocity ratios
are shown in figures 31 through 60. The corrected maximum suction surface
velocities shown on the appropriate figures were corrected using the technique
described on page 8. Although this technique is not correct when the axial
velocity does not vary liaearily through the blade passage, the error associated
with the nonlinearity in the axial velocity through Rotor B and Stator B is con-
sidered minimal since the maximum suction surface-to-exit velocity ratios for
these blade rows weuld increase by less than 5% if it was assumed that all of
the acceleration of the flow occurs through the front airfoil.

Since the tandem airfoil sections were originally defined on plane surfaces

normal to a radial line, it was not necessary to redefine the surface coordinates
for manufacturing purposes.

13
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MECHANICAL DESIGN

Rotor Steady-State Sti‘ess Analysis

Rotor A

The stresses due to centrifugal loads and/or gas bending loads were calcu-
lated at thirteen radial locations for a Rotor A airfoil fabricated from AMS 5616
(stainless steel). The reduction of gas bending stress due to centrifugal load was
considered and the resulting net gas bending stress and :entrifugal tensile stress
were added to yield the total blade stress at each radial location. The results of
this analysis are presented in figure 61. The maximum stress for Rotor A was
14,200 psi at the trailing edge of the hub section. This calculated stress is well
within the 0.2% yield strength of 110,000 psi for AMS 5616.

Rotor B and Rotor C

Preliminary anal-'sis of the front and rear airfoil natural frequencies for
Rotors B and C indicated that a bridg~ connecting the two airfoils in tandem was
required to increase ‘requency and stiffness (thus reducing susceptability to
flutter, as will be discussed on page 18) and to ensure dimensional stability
durirg operation. Rotors B and C, with a 0, 030-in. thick interblade bridge at
30% span, were analyzed to determine airfoil and interblade bridge stress due
to centrifugal and/or gas bending loads. To minimize centrifugal force stress,
titanium (AMS 4973) was selected as the blade material in preference to stainless
steel (AMS 5616). An analytical model comprised of statically loaded elastic
structures represented hy slender prismatic beam members was used to determine
tandem blade stress. Figure 62 presents a graphic description of the analytical
model. The front and rear airfoils of Rotors B and C were each divided into
ten elements and the intert:lade bridge was divided into three elements. The
beam members or elements were represented by their centroidal axis and analyzed
as line elements. Centrifugal and aerodynamic loads were then applied to each
element to yield reactions and displacements of the element or the element end,
i.e., joint. These values were then used to calculate the total stress values
shown in figures 63 and 64 for Rotors B and C, respectively. Maximum stress
in each blade occurred in the leading edge of the front airfoil at the hub. These
stresses were 23, 000 psi for Rotor B and 26,000 psi for Rotor C. The maximum
interblade bridge stresses were 11,200 psi and 15, 000 psi for Rotors B and C,
respectivelv. These calculated steady-state blade element stresses are well
within the 0. 2% yield strength of 104,000 psi for titanium (AMS 4973).

Rotor Vibratory Analysis

Rotor A

Bending and torsional vibratory frequencies were calculated for Rotor A
and the results presented in terms of frequency vs rotor speed in figure 65. At
design equivalent rotor speed the calculated bending and torsional vibratory
frequencies were 680 cps and 1450 cps, respectively. Lines repiresenting multi-
ples of rotor frequency (E) are shown in figure 65 to permit identification of
resonant operating conditions that might possibly be encountered dvuring testing,
due to upstream bearing support struts, rotating stall zones, or upstreain
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inctrumentation. Because of the relatively high resonant frequencies shown in
figure 65 and the large vibratory stress margin available (as indicated by the
Goodman diagram of figure 66, i.e., 55,000 psi based or the smooth tatigue
strength and 19, 000 psi based on the notched fatigue strength), no Rotor A
vibratory problem is anticipated.

Rotor B and Rotor C

Bending vibratory frequencies were calculated for the individual front and
rear airfoils and the bridged airfoil configurations of tandem Rotors B and C,
and the results are shown in terms of frequency vs rotor speed in figures 67 and
68. The calculated frequencies for the {ront and rear airfoils of Rotor B at
design equivalent rotor speed were 290 and 380 cps. The corresponding values
for Rotor C are 285 and 340 cps. The bridged blade bending frequencies were
determined by restraining the front and rear airfoils at the bridge location such
that bending vibretory motion was permitted in one plane, i.e., at one shroud
angle. The shroud angle was then varied until both the front and rear airfoils
achieved the same frequency, or theoretically vibrated together. The frequencies
so calculated for tanaem Rotors B and C at design equivalent rotor speed were
aporoximately 550 and 420 cps, respectively. Since the Rotor B bending frequency,
shown in figure 67, does not intersect the lines representing multiples of rotor
frequency (E) at the required operating speeds (i.e., 50, 70, 90, 100, and 110%
of design speed), no resonance problem is anticipated for this rotor. As can
be seen in figure 68, the first bending mode for Rotor C does intersect the 6E
line at design equivalent rotor speed. This indicates a potential resonance
condition because there are six inlet struts. However, no resonance condition is
expected b cause the unequally spaced struts (t/c = 0. 12) are located three chord
lengths upstream of the rotor, and their wakes are substantially dissipated at the
rotor inlet.

Torsional vibratory frequencies calculated for the front and rear airfoils of
Rotors B and C at design equivalent rotor speed were 1215 and 1280 cps and
1210 and 1270 cps, respectively. Torsional frequencies for bridged blade configura-
tions were not calculated since the individual airfoil frequencies were well above
the 6E excitation frequency, as shown in figures 67 and 68. To illustrate the
vibratory stress margin present in the design of Rotors B a.d C, a Goodman
diagram for AMS 4973 is presented in figure 69. As shown in figure 69, allowable
vibratory stress to failure for Rotors B and C are 44,000 and 42,000 psi,
respectively, based on the smooth fatigue strength and 28,000 and 26,500 psi,
respectively, based on the notched fatigue strength. Neither configuration
indicated a vibratory fatigue problem.

Rotor Flutter Analysis

Rotor A
Values of the reduced velocity and incidence parameters were calculated for

Rotor A at the design operating conditions and for the estimated negative and
positive incidence operating limits and compared to correlated flutter data for
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the first bending and iirst torsional vibratory frequencies (figure 70). The
reduced velocity parameter is defined as:

12V
K= mTcw

and the incidence parameter is defined as:
i

i
m -
Y

low-loss incidence range

f(im) =

where V, ¢, iy of? and low-loss incidence range are the values for airfoil sections
located at 25% span from the tip. The low-loss incidence range and impof Were
determined from an unpublished P&WA cascade data correlation. The bending

and torsional mode flutter calculations were made at Mach numbers of 0.4 and

0.6, respectively, so that the values obtained could be compared with the
correlated data. As indicated by the operating envelopes shownr in figure 70,

no bending or torsional flutter problems are anticipated for Rotor A.

Rotor B and Rotor C

Values of the reduced velocity and incidence parameters were calculated
for the individual front and rear airfoils of Rotors B and C at the design
operating conditions and the results are compared to correlated flutter data
in figures 71 and 72. Based on the narrow safe operating ranges associated
with the high reduced velocity parameters for the individual airfoils, a 0.060-in.
thick interblade bridge was added to both Rotors B and C at 30% span to increase
the blade natural frequencies.

The reduced velocities and incidence parameters for the bridged blades
were calculated using the overall chord dimensions and the front airfoil inci-
dence angles and velocities. This was done because the front airfoil of the
tandem configuration is subjected to incidence angle variations, while the
incidence angle variations on the rear airfoil are expected to be small because
of the small variations in exit air angle from the front airfoil. The overall
chord was used because the bridged blades will move together in the immediate
bridge region. The Rotor B and Rotor C reduced velocity parameters for bending
operating ranges were based on the calculated bridged blade frequencies. However,
since the bridged blade torsional frequencies were not available, the rear air-
foil frequencies were used to calculate the torsional reduced velocity parameter.
Because individual airfoil frequencies are expected to be less than the bridged
blade frequencies, any conclusion based on the individual airfoil should be
conservative. Values of the reduced velocity and incidence parameters for
tandem Rotors B and C at the design operating conditions and the estimated
negative and positive incidence limits are shown in relation to correlated
flutter data in figures 71 and 72. As indicated by the operating envelopes shown
in figures 71 and 72, no bending or torsional flutter problems are anticipated
for either Rotor B or Rotor C.
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Rotor Attachment

Blade spindle tensile, bending, shear, and bearing stresses were calculated
censidering the airfoil centrifugal forces and gas bending stresses due to aero-
dynamic loading. The calculations were performed at a rotor speed of 6000 rpm,
which is approximately 140% of design speed. The results of the stress calculations
for Rotors A, B, and C are przsented in table VIII. The rombined tensile and
bending spindle stresses calculated for Rotor A and Rotors B and C were 67, 700
and 30,200 psi, respectively. These calculated stresses are well within the
0.2% yield strengths of 114,000 and 104, 000 psi of the stainless steel (AMS 5616)
and titanium (AMS 4973) selected for Rotor A and Rotors B and C, respectively.
Similarly, calculated shear and bearirg stresses of 12,900 and 84, 000 psi for
Rotor A and 5, 760 and 37,500 psi for Rotors B and C, respectively, did not
exceed the spacified material limitation shown in table VIII (i.e., allowable
shear stress equals 55% of material ultimate tensile strength and allowable bearing
stress equals 120% of material 0. 2% yield strength). Consequently, no blade
attachment stress problems are anticipated.

Rotor Disk and Carrier

The average tangential stress for the AMS 6415 (low alloy steel} rotor
disk and carrier was determined through the use of a computer disk analysis
program and found to be well within design practice for AMS 6415 (0. 2% yield
strength of 140,000 psi). The results of this analysis are presented in table IX,

Stator Steady-State Stress Analysis

The gas bending stresses in the leading and trailing edge and on the concave
surface at the point of maximum thickness were calculated for Stator A and the
front and rear airfoils of Stator B. Calculations were made assuming (1) the
vanes would be fabricated from AMS 5613, a stainless steel that has a 0. 2% yield
strength of 110,000 psi and (:) the vanes were beams that would deflect as guided
cantilevers about the tip. The guided cantilever about the tip condition was
selected, even though the stator vanes are attached to the shrouds by trunions
at both the hub and tip, to provide a conservative estimate uf the vane stresses.
Some movement of the vane at the hub is possible. These stress values are
shown in figure 73 for Stator A and in figure 74 for Stator B. The maximum
bending stress of 2650 psi occurred in the trailing edge tip of Stator A. A
maximum Stator B front airfoil bending stress of 4000 psi (compressive) was
calculated for the convex surface at the tip. The maximum rear airfoil stress
was 12,000 psi and occurred in both the leading and trailing edges at the tip.
None of the calculated stator stresses were prohibitive because of the high yield
strength of the vane material and no stress nroblem is anticipated.
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Table IX. Disk and Carrier Stress

(6000 rpm)
Configuration Rotor A Rotor B and Rotor C
Disk (AMS 6415) Stress, psi 94,000 42,000
Carrier (AMS 6415) Stress, psi 62,000 27,700
0.2% Yield Strength of
AMS 641F at 190 °F, psi 140, 000 7 140,000

Stator Vibratory Analysis

Bending and torsional vibratory frequencies were calculated for Stator A
and Stator B front and rear airfoils and the results presentecd in terms of
frequency vs rotor speed in figures 75 and 76, The vibratory analysis was made
assuming the stators to be beams with both ends fixed (fixed-fixed mode). This
assumption was permissable because stator hub and tip trunions are held in
inner and outer diameter shrouds. Lines representing multiples of rotor passing
frequency (70E) are shown in the figures to permit the identification of any
excitation frequencies within the operating range. Stator A bending and torsional
frequencies in the fixed-fixed mode were 2200 cps and 2500 cps, respectively.
Stator B front and rear airfoil bending frequencies were 810 cps and 1220 cps,
respectively, while the torsional frequency of both the front and rear airfoils
was 2500 cps. No vibratory fatigue problems are anticipated for either Stator A
or Stator B. Because of the low steady-state stress present in these vanes, a
large vibratory stress margin is available, as indicated by the Goodman diagram
of figure 77 for Stator A and figure 78 for Stator B. As shown in figure 77,
Stator A can withstand 56,000 psi vibratory stress based on the smooth fatigue
strength and 21, 000 psi based on the notched fatigue strength. Similarly shown
in figure 78, Stator B front and rear airfoils can withstand 55,000 and 51, 000 psi
vibratory stress, respectively, based on the smooth fatigue strength; and
20,600 and 19,000 psi, respectively, based on the notched fatigue strength.

Stator Flutter Analysis

Stator A and Stator B front and rear airfoil torsional stall flutter charac-
teristics were calculated and presented for comp- .ison with correlated flutter
data in figures 79 and 80. The flutter variables are a reduced velocity para-
meter K, as defined in the rotor flutter analysis section, page 18, and an
average row pressure ratio, defined as:

Ple + Pte

2
le

P

The values of velocity and chord used to calculate the stator reduced
velocity parameter are the values at 50% span. Torsional frequencies for the
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stators in a fixed-fixed conflguration were used in the calculations. As shown

in figures 79 and 80, no flutter problems are anticipated for Stator A or the
front and rear airfoils of Stator B.

Stator Attachment

Stator assembly is achieved by tack welding the cylindrical trunions at
each end of the vane into the inner and outer diameter shrouds. The cross
section of primary interest for stator stress evaluation is the junction of
the airfoils and trunion. For this cross sectional area of Stator A, the cal-
culated bending stress was 13,400 psi. For Stator B front and rear airfoils,
this stress was 11,300 psi and 47,000 psi. These trunion-airfoil stress values
are well within the 0. 2% yield strength of 110,000 psi for the AMS 5613 stainless
steel material selected for stator fabrication, and no stress problems are
anticipated.
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ROTOR DIFFUSION FACTOR, D

STATOR DIFFUSION FACTOR, D
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Figure 8. Rotor and Stator Loading Distributions DF 90565
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Figure 9. Rotor and Stator Loss Profile DF 90566
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ROTOR EXIT TOTAL PRESSURE, Po - psia

STATOR EXIT TOTAL PRESSURE, Pya ~ psia
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Figure 10. Rotor and Stator Exit Pressure Profile DF 90567
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Figure 11. Rotor Incidence and Deviation Angle DF 90568
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CAMBER ANGLE, ¢-deg
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Figure 13. Stator Incidence and Deviation Angle DF 90570
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37
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Figure 16. Rotor Exit Metal Angle Comparison DF 90573



STATOR INLET METAL ANGLE, Ko ~deg

50

49 —— _Design
———_Redefined by Rotating Airfoil Sections
48 From Planes Tangent to the Conic
(Table III) to Plapes Normal to a
Radial Line
47
46
45
44
43
42
41
40
16 17 18 19 20 21
RADIUS - in,
Figure 17, Stator Inlet Metal Angle Comparison DF 90574
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Figure 22. Stator A Vane Surface Velocities, 5% DF 90579
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Figure 32. Rotor B Blade Surface Velocities, 5% DF 90587
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Figure 34. Rotor B Blade Surface Velocities, 25% DF 90589
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Figure 36. Rotor B Blade Surface Velocities, 50% DF 90591
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VIBRATORY STRESS x 10™° - psi
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rfigure 66, Rotor A Goodman Diagram
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VIBRATORY STRESS x 10”5 = psi

AMS 4973 - Titanium (PWA 1202) 200°F
60
Smooth Fatigue Strength , -8 Cycles
55 (Reverse Bending)
50
Allowable Rotor B and C Vibralory
45 Stress to Failure (Smooth)
i
40 | i 8
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35 : (Reverse Bending, KT =3,0)
30 " Allowable Rotor B and C Vibratory
Stress to Failure (Notched)
25 |
|
|
20 I
|
15 |
!
10 !
' Maximum Rotor B te Stress
5 ; _o— Maximum Rotor C Steady: Stress
]
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0
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Figure 69. Rotors B and C Goodman Diagram DF 90620
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3.0. Assume Guided Cantilever About Tip

2.0 Trailing Edge

Ve Leading Edge

L0 Convex Surface

STRESS x 10™° - psl

-1. 0

-2,0 Note: Negative Sign Indicates
Compressive Stress,

0 10 20 30 40 50 60 70 80 90 100
Tip Hub

Fixed i
(Fixed) PERCENT SPAN (Guided)

Figure 73. Calculated Stator A Stress Distribution

DF 90634
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VIBRATORY STRESS x 10~ - psi

ASM 5613 - Stainless Steel 200°F

70
65
Ve Smooth Fatigue Strength, 5 x 107 Cycles
60 (Reverse Bending)
55 \
50 Allowable Vibratory Stress to Fa':.
45
40 /—— MaXx{mum Steady-State Stress
35

(24
o

&

[ a4
(=]

15 \
10
5
0.2% Yield Strength —__
0

*:2 (Smooth)

Notched Fa! Strength, 5 x 107 Cycles
(Reverse Bending)
<Allowable Vibrato ess to Failure (Notched)

O 10 20 30 40 50 .0 170 80 90
STEADY STRESS x 10™° - pal

Figure 77. Stator A Goodman Diagram

100 110 120

DF 90626
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AMS 5613 - Stainless Steel - 200°F

70
65
/—Smooth Fatigue Strength, 5 x 107 Cycles
60 / (Reverse Bending)
55 \ Allowable Vibratory Stress to Failure (Smooth)
X/
- 50T
-]
& 1
1
G 4 | Maximum Front Body Steady-State Stress

S Lot
40 |
?}; 35 I ! /— Maximum Rear Body Steady-~State Streas
&= .
® a0
% | /—Notched Fatigu\§trength, § x 107 Cycles
E 25 | Allowable Vibraqry Stress to Failure (Notched)
g 20 _1_4
> |

15] |

10 l ~

s| | !
| 0.2% Yield Strength —
ol :

O 10 20 30 40 56 60 70 80 ¢. 100 110 120
STEADY STRESS x 10™2 - psi

Figure 78. Sta’>r B Goodmaa Diagram DF 90627
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REDUCED VELOCITY PARAMETER, K =

Fixed - Fixed Configuration
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Operating
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Figure 79. Calculated Stator A First Torsional Mode DF 9062?

Flutter Characteristics
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APPENDIX A
DEFINITION OF SYMBOLS AND DESIGN VARIABLES

Definition of Symbols
Flowpath annular area, I:‘t2
Inlet relative stagnation velocity of sound, ft/sec
Chord length, in.
Static pressure coefficient
Diameter, ir.
Diffusion factor
Multiple of rotor frequency
Tandem airfoil passage convergence ‘See figure 25.)
Incidence parameter
Tandem airfoil passage gap (te), in. (See figure 25.)
Tandem airfoil passage gap (le), in. (See figure 25.)
Incidence angle, deg
Reduced velocity parameter
Noich factor
Tandem airfoil passage overlap, in, (See figure 25.)
Local correction for suction urface velocity (See figure 19.)
Mach number
Rotor speed, rpm
Total pressure, psia
Pressure ratio
Static pressure, psia
Blade spacing, in.
Blade maximum thickness, in.
Total temperature, °R

Rotor speed, ft/sec
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€ ® q

£

@wcosBte
20

Subscripts:
b

c
cx
fs
id
le

L
104

Velocity, ft/sec
Actual flowrate, ib, /sec

Cone angle (angle of plane tangent to conic surface that approximates
the design streamline of revolution), deg

Air angle, degrees from zxial direction

Flow turning angle, deg

Ratio of specific heats

Blade-chord angie, degrees from axial direction

Ratio of total pressure to NASA standard sea level pressure of
14.694 psia

Deviation angle, deg

Ratio of total temperature to NASA standard sea level temperature
of 518.7°R

Blade me<tal angle, degrees from axial direction
Density, lbt—secz/ft4

Solidity

Blade camber angle, deg

Frequency, Hertz

Loss coefficient

Loss paramete.

Bending

Combined or overall
Overall axial

Free stream value
Isentropic ccadition
Lead.ng edge

Local



max Maximum

ref Minimum loss

te Trailing edge

t Torsionai

z Axial compone.

[ Tangential component

1 Front airfoil of tandem blade or vane
2 Rear airfoil of tandem blade or vane
Superscripts:

Related to rotor blade
Mass average value

Definition of Design Variables

Incidence Angle:

— ' - 'Y
Rotor: im— Ble Kle Stator:

Diffusion Factor:

Stator: D=1 -

Vi d V4.9te - dle V"le

Deviatica Angle:

te te
Rotor: D=1~ o5— +
Vle (dle * dte)? Vie
Vie _ dteVOte B dleVOle
Vie e * )0V,
. o_ g1 _ . o_
Rotor: &6 =8 te K te Stator: é

I = Ble = Kie
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Loss Coefficient:

(P!).,- P!
Rotor: w's= Ee id__te
1
ple Ple
where:
(
2 2
U d
. — D1 v-1 te [ _({de
(Pl =Ple] 1+ 73 5 ) 11-13
a ~ te
Ole L
\ —‘Y_
P! is found from p/P' = [1 +1-;—-1- M'2] 1-7
P, -P
Stator: w= 52—
fs ~ Ple
Static Pressure Coefficient:
P; =P
Cp __L fs2
1/ 2pfsvfs
Pressure Ratio:
P P
Rotor: —rotor te Stage: _stator te
1)rotor le Protor le
Equivalent Flow:
we
)
Equivalent Rotor Speed:
NA§
Adiabatic Efficiency:
-1 -1
(PR} 7 -1 (PR) ¥ -1
Rotor: -~ Stage:

Tte/518'7 -1

106
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