721 research outputs found

    3D global multi-species Hall-MHD simulation of the Cassini T9 flyby

    Get PDF
    The wake region of Titan is an important component of Titan's interaction with its surrounding plasma and therefore a thorough understanding of its formation and structure is of primary interest. The Cassini spacecraft passed through the distant downstream region of Titan on 18: 59: 30 UT Dec. 26, 2005, which is referred to as the T9 flyby and provided a great opportunity to test our understanding of the highly dynamic wake region. In this paper we compare the observational data (from the magnetometer, plasma analyzer and Langmuir probe) with numerical results using a 7-species Hall MHD Titan model. There is a good agreement between the observed and modeled parameters, given the uncertainties in plasma measurements and the approximations inherent in the Hall MHD model. Our simulation results also show that Hall MHD model results fit the observations better than the non-Hall MHD model for the flyby, consistent with the importance of kinetic effects in the Titan interaction. Based on the model results, we also identify various regions near Titan where Hall MHD models are applicable

    Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements

    Get PDF
    International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∼1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∼1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet

    Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT

    Get PDF
    Automatic methods for feature extraction, volumetry, and morphometric analysis in clinical neuroscience typically operate on images obtained with magnetic resonance (MR) imaging equipment. Although CT scans are less expensive to acquire and more widely available than MR scans, their application is currently limited to the visual assessment of brain integrity and the exclusion of co-pathologies. CT has rarely been used for tissue classification because the contrast between grey matter and white matter was considered insufficient. In this study, we propose an automatic method for segmenting grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), and intracranial volume (ICV) from head CT images. A U-Net deep learning model was trained and validated on CT images with MRI-derived segmentation labels. We used data from 744 participants of the Gothenburg H70 Birth Cohort Studies for whom CT and T1-weighted MR images had been acquired on the same day. Our proposed model predicted brain tissue classes accurately from unseen CT images (Dice coefficients of 0.79, 0.82, 0.75, 0.93 and 0.98 for GM, WM, CSF, brain volume and ICV, respectively). To contextualize these results, we generated benchmarks based on established MR-based methods and intentional image degradation. Our findings demonstrate that CT-derived segmentations can be used to delineate and quantify brain tissues, opening new possibilities for the use of CT in clinical practice and research

    Saturn’s near-equatorial ionospheric conductivities from in situ measurements

    Get PDF
    Cassini’s Grand Finale orbits provided for the first time in-situ measurements of Saturn’s topside ionosphere. We present the Pedersen and Hall conductivities of the top near-equatorial dayside ionosphere, derived from the in-situ measurements by the Cassini Radio and Wave Plasma Science Langmuir Probe, the Ion and Neutral Mass Spectrometer and the fluxgate magnetometer. The Pedersen and Hall conductivities are constrained to at least 10⁻⁵–10⁻⁴ S/m at (or close to) the ionospheric peak, a factor 10–100 higher than estimated previously. We show that this is due to the presence of dusty plasma in the near-equatorial ionosphere. We also show the conductive ionospheric region to be extensive, with thickness of 300–800 km. Furthermore, our results suggest a temporal variation (decrease) of the plasma densities, mean ion masses and consequently the conductivities from orbit 288 to 292

    Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimer's disease

    Get PDF
    We have recently reported that a polymorphism in the cell division cycle (CDC2) gene, designated Ex6 + 7I/D, is associated with Alzheimer's disease (AD). The CDC2 gene is located on chromosome 10q21.1 close to the marker D10S1225 linked to AD. Active cdc2 accumulates in neurons containing neurofibrillary tangles (NFT), a process that can precede the formation of NFT. Therefore, CDC2 is a promising candidate susceptibility gene for AD. We investigated the possible effects of the CDC2 polymorphism on cerebrospinal fluid (CSF) biomarkers in AD patients. CDC2 genotypes were evaluated in relation to CSF protein levels of total tau, phospho-tau and beta-amyloid (1-42) in AD patients and control individuals, and in relation to the amount of senile plaques and NFT in the frontal cortex and in the hippocampus in patients with autopsy-proven AD and controls. The CDC2 Ex6 + 7I allele was associated with a gene dose-dependent increase of CSF total tau levels (F-2,F- 626 = 7.0, p = 0.001) and the homozygous CDC2Ex6 +7II genotype was significantly more frequent among AD patients compared to controls (p = 0.006, OR = 1.57, 95% CI 1.13-2.17). Our results provide further evidence for an involvement of cdc2 in the pathogenesis of AD. Copyright (C) 2005 S. Karger AG, Basel

    Cassini multi-instrument assessment of Saturn's polar cap boundary

    Get PDF
    We present the first systematic investigation of the polar cap boundary in Saturn's high-latitude magnetosphere through a multi-instrument assessment of various Cassini in situ data sets gathered between 2006 and 2009. We identify 48 polar cap crossings where the polar cap boundary can be clearly observed in the step in upper cutoff of auroral hiss emissions from the plasma wave data, a sudden increase in electron density, an anisotropy of energetic electrons along the magnetic field, and an increase in incidence of higher-energy electrons from the low-energy electron spectrometer measurements as we move equatorward from the pole. We determine the average level of coincidence of the polar cap boundary identified in the various in situ data sets to be 0.34° ± 0.05° colatitude. The average location of the boundary in the southern (northern) hemisphere is found to be at 15.6° (13.3°) colatitude. In both hemispheres we identify a consistent equatorward offset between the poleward edge of the auroral upward directed field-aligned current region of ~1.5–1.8° colatitude to the corresponding polar cap boundary. We identify atypical observations in the boundary region, including observations of approximately hourly periodicities in the auroral hiss emissions close to the pole. We suggest that the position of the southern polar cap boundary is somewhat ordered by the southern planetary period oscillation phase but that it cannot account for the boundary's full latitudinal variability. We find no clear evidence of any ordering of the northern polar cap boundary location with the northern planetary period magnetic field oscillation phase

    Effects of Peroral Omega-3 Fatty Acid Supplementation on Cerebrospinal Fluid Biomarkers in Patients with Alzheimer’s Disease: A Randomized Controlled Trial—The OmegAD Study

    Get PDF
    Background: Studies have suggested a connection between a decrease in the levels of polyunsaturated fatty acids (PUFAs) and Alzheimer’s disease (AD). We aimed to assess the effect of supplementation with omega-3 fatty acids (n-3 FAs) on biomarkers analyzed in the cerebrospinal fluid (CSF) of patients diagnosed with AD. / Objective: To investigate the effects of daily supplementation with 2.3 g of PUFAs in AD patients on the biomarkers in CSF described below. We also explored the possible correlation between these biomarkers and the performance in the cognitive test Mini-Mental State Examination (MMSE). / Methods: Thirty-three patients diagnosed with AD were randomized to either treatment with a daily intake of 2.3 g of n-3 FAs (n  =  18) or placebo (n  =  15). CSF samples were collected at baseline and after six months of treatment, and the following biomarkers were analyzed: Aβ 38, Aβ 40, Aβ 42, t-tau, p-tau, neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), soluble IL-1 receptor type II (sIL-1RII), and IL-6. / Results: There were no significant differences between the groups concerning the level of the different biomarkers in the CSF at baseline. Within the treatment group, there was a small but significant increase in both YKL-40 (p = 0.04) and NfL (p = 0.03), while the other CSF biomarkers remained stable. / Conclusion: Supplementation with n-3 FAs had a statistically significant effect on NfL and YKL-40, resulting in an increase of both biomarkers, indicating a possible increase of inflammatory response and axonal damage. This increase in biomarkers did not correlate with MMSE score. / Trial registration: clinicaltrial.gov Identifier: NCT00211159

    Charged nanograins in the Enceladus plume

    Get PDF
    There have been three Cassini encounters with the south-pole eruptive plume of Enceladus for which the Cassini Plasma Spectrometer (CAPS) had viewing in the spacecraft ram direction. In each case, CAPS detected a cold dense population of heavy charged particles having mass-to-charge (m/q) ratios up to the maximum detectable by CAPS ( 104 amu/e). These particles are interpreted as singly charged nanometer-sized water-ice grains. Although they are detected with both negative and positive net charges, the former greatly outnumber the latter, at least in the m/q range accessible to CAPS. On the most distant available encounter (E3, March 2008) we derive a net (negative) charge density of up to 2600 e/cm3 for nanograins, far exceeding the ambient plasma number density, but less than the net (positive) charge density inferred from the RPWS Langmuir probe data during the same plume encounter. Comparison of the CAPS data from the three available encounters is consistent with the idea that the nanograins leave the surface vents largely uncharged, but become increasingly negatively charged by plasma electron impact as they move farther from the satellite. These nanograin
    corecore