437 research outputs found
Measuring the Fraction of Obscured Quasars by the Infrared Luminosity of Unobscured Quasars
Recent work has suggested that the fraction of obscured AGN declines with
increasing luminosity, but it has been difficult to quantify this trend. Here,
we attempt to measure this fraction as a function of luminosity by studying the
ratio of mid-infrared to intrinsic nuclear bolometric luminosity in unobscured
AGN. Because the mid-infrared is created by dust reprocessing of shorter
wavelength nuclear light, this ratio is a diagnostic of f_obsc, the fraction of
solid angle around the nucleus covered by obscuring matter. In order to
eliminate possible redshift-dependences while also achieving a large dynamic
range in luminosity, we have collected archival 24 micron MIPS photometry from
objects with z~1 in the Sloan Digital Sky Survey (SDSS), the Great
Observatories Origins Deep Survey (GOODS) and the Cosmic Evolution Survey
(COSMOS). To measure the bolometric luminosity for each object, we used
archival optical data supplemented by GALEX data. We find that the mean ratio
of 24 microns to bolometric luminosity decreases by a factor of ~3 in the
L_bol=10^44-3x10^47 ergs s^-1 range, but there is also a large scatter at
constant L_bol. Using radiation transfer solutions for model geometries, we
show how the IR/bolometric ratio relates to f_obsc and compare these values
with those obtained obtained from samples of X-ray selected AGN. Although we
find approximate agreement, our method indicates somewhat higher values of
f_obsc, particularly in the middle range of luminosities, suggesting that there
may be a significant number of heavily obscured AGN missed by X-ray surveys.Comment: ApJ, in press. 10 pages in emulateapj style, 4 figures, 3 table
Suzaku observations of hard X-ray selected Seyfert 2 galaxies
We present Suzaku observations of five hard X-ray selected nearby Seyfert 2
galaxies. All the sources were clearly detected with the pin Hard X-ray
Detector up to several tens of keV, allowing for a fairly good characterization
of the broad-band X-ray continuum. We find that a unique model, even including
multiple components, fails to represent the spectra of all the sources. Heavy
obscuration manifests itself in different flavours. For two sources there is
evidence for a reflection dominated continuum; among the other three, one is
"mildly" Compton thick (N_H ~ 10^24 cm-2), while the remaining two are heavily
obscured (N_H ~ 10^23.5 cm-2), but Compton thin. Strong, narrow, iron Kalpha
lines (EW ~ 1-2 keV) due to neutral or mildly ionized gas, are detected in
Compton thick AGN. In all of them the Kalpha line is accompanied by the Kbeta.
The intensity and shape of the soft X-ray spectrum are different from object to
object. Soft X--rays may originate from a nuclear component scattered off, or
leaking through, the X-ray absorber, plus thermal X-rays from the host galaxy.
Emission from circumnuclear gas photoionized by the active nucleus,
parameterized with a power law plus individual narrow Gaussian lines, also
provides an acceptable description of the soft X-ray spectra. The limited
Suzaku XIS CCD energy resolution does not allow us to draw firm conclusions on
the origin of the soft X--ray emission. We briefly discuss our findings in the
light of AGN Unified model and the geometry of the obscuring gas.Comment: 22 pages, 3 Figures; ApJ in pres
The Obscured Fraction of AGN in the XMM-COSMOS Survey: A Spectral Energy Distribution Perspective
The fraction of AGN luminosity obscured by dust and re-emitted in the mid-IR
is critical for understanding AGN evolution, unification, and parsec-scale AGN
physics. For unobscured (Type-1) AGN, where we have a direct view of the
accretion disk, the dust covering factor can be measured by computing the ratio
of re-processed mid-IR emission to intrinsic nuclear bolometric luminosity. We
use this technique to estimate the obscured AGN fraction as a function of
luminosity and redshift for 513 Type-1 AGN from the XMM-COSMOS survey. The
re-processed and intrinsic luminosities are computed by fitting the 18-band
COSMOS photometry with a custom SED-fitting code, which jointly models emission
from: hot-dust in the AGN torus, the accretion disk, and the host-galaxy. We
find a relatively shallow decrease of the luminosity ratio as a function of
Lbol, which we interpret as a corresponding decrease in the obscured fraction.
In the context of the receding torus model, where dust sublimation reduces the
covering factor of more luminous AGN, our measurements require a torus height
which increases with luminosity as h ~ Lbol^{0.3-0.4}. Our obscured
fraction-luminosity relation agrees with determinations from SDSS censuses of
Type-1 and Type-2 quasars, and favors a torus optically thin to mid-IR
radiation. We find a much weaker dependence of obscured fraction on 2-10 keV
luminosity than previous determinations from X-ray surveys, and argue that
X-ray surveys miss a significant population of highly obscured Compton-thick
AGN. Our analysis shows no clear evidence for evolution of obscured fraction
with redshift.Comment: 33 pages, 24 figures, ApJ accepte
Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured
Mergers of galaxies are thought to cause significant gas inflows to the inner
parsecs, which can activate rapid accretion onto supermassive black holes
(SMBHs), giving rise to Active Galactic Nuclei (AGN). During a significant
fraction of this process, SMBHs are predicted to be enshrouded by gas and dust.
Studying 52 galactic nuclei in infrared-selected local Luminous and
Ultra-luminous infrared galaxies in different merger stages in the hard X-ray
band, where radiation is less affected by absorption, we find that the amount
of material around SMBHs increases during the last phases of the merger. We
find that the fraction of Compton-thick (CT, ) AGN in late merger galaxies is higher
() than in local hard X-ray selected AGN
(), and that obscuration reaches its maximum when the
nuclei of the two merging galaxies are at a projected distance of
kiloparsecs (). We also
find that all AGN of our sample in late merger galaxies have , which implies that the obscuring material covers
of the X-ray source. These observations show that the material
is most effectively funnelled from the galactic scale to the inner tens of
parsecs during the late stages of galaxy mergers, and that the close
environment of SMBHs in advanced mergers is richer in gas and dust with respect
to that of SMBHs in isolated galaxies, and cannot be explained by the classical
AGN unification model in which the torus is responsible for the obscuration.Comment: Final version matching the article published in MNRAS - 30 pages, 16
figure
The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Medium-Band optical imaging and high quality 32-band photometric redshifts in the ECDF-S
We present deep optical 18-medium-band photometry from the Subaru telescope
over the ~30' x 30' Extended Chandra Deep Field-South (ECDF-S), as part of the
Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of
ground- and space-based ancillary data, and contains the GOODS-South field and
the Hubble Ultra Deep Field. We combine the Subaru imaging with existing
UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting
sources in the MUSYC BVR image we find ~40,000 galaxies with R_AB<25.3, the
median 5 sigma limit of the 18 medium bands. Photometric redshifts are
determined using the EAZY code and compared to ~2000 spectroscopic redshifts in
this field. The medium band filters provide very accurate redshifts for the
(bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 <
z 3.5. For 0.1 < z < 1.2, we find a 1 sigma scatter in \Delta
z/(1+z) of 0.007, similar to results obtained with a similar filter set in the
COSMOS field. As a demonstration of the data quality, we show that the red
sequence and blue cloud can be cleanly identified in rest-frame color-magnitude
diagrams at 0.1 < z < 1.2. We find that ~20% of the red-sequence-galaxies show
evidence of dust-emission at longer rest-frame wavelengths. The reduced images,
photometric catalog, and photometric redshifts are provided through the public
MUSYC website.Comment: 19 pages, 14 image
High precision X-ray logN-logS distributions: implications for the obscured AGN population
We have constrained the extragalactic source count distributions over a broad
range of X-ray fluxes and in various energy bands to test whether the
predictions from X-ray background synthesis models agree with the observational
constraints provided by our measurements. We have used 1129 XMM-Newton
observations at |b|>20 deg covering a sky area of 132.3 deg^2 to compile the
largest complete samples of X-ray objects to date in the 0.5-1 keV, 1-2 keV,
2-4.5 keV, 4.5-10 keV, 0.5-2 keV and 2-10 keV energy bands. Our survey includes
in excess of 30,000 sources down to ~10^-15 erg/cm^2/s below 2 keV and down to
~10^{-14} erg/cm^2/s above 2 keV. A break in the source count distributions was
detected in all energy bands except the 4.5-10 keV band. An analytical model
comprising 2 power-law components cannot adequately describe the curvature seen
in the source count distributions. The shape of the logN(>S)-logS is strongly
dependent on the energy band with a general steepening apparent as we move to
higher energies. This is due to non-AGN populations, comprised mainly of stars
and clusters of galaxies, contribute up to 30% of the source population at
energies 10^{-13} erg/cm^2/s, and these populations of
objects have significantly flatter source count distributions than AGN. We find
a substantial increase in the relative fraction of hard X-ray sources at higher
energies, from >55% below 2 keV to >77% above 2 keV. However the majority of
sources detected above 4.5 keV still have significant flux below 2 keV.
Comparison with predictions from the synthesis models suggest that the models
might be overpredicting the number of faint absorbed AGN, which would call for
fine adjustment of some model parameters such as the obscured to unobscured AGN
ratio and/or the distribution of column densities at intermediate obscuration.Comment: Accepted for publication in Astronomy and Astrophysics. Abridged
Abstract. 23 pages, 47 figures, 8 table
Investigating the evolution of the dual AGN system ESO~509-IG066
We analyze the evolution of the dual AGN in ESO 509-IG066, a galaxy pair
located at z=0.034 whose nuclei are separated by 11 kpc. Previous observations
with XMM-Newton on this dual AGN found evidence for two moderately obscured
( cm) X-ray luminous ( erg/s) nuclear
sources. We present an analysis of subsequent Chandra, NuSTAR and Swift/XRT
observations that show one source has dropped in flux by a factor of 10 between
2004 and 2011, which could be explained by either an increase in the absorbing
column or an intrinsic fading of the central engine possibly due to a decrease
in mass accretion. Both of these scenarios are predicted by galaxy merger
simulations. The source which has dropped in flux is not detected by NuSTAR,
which argues against absorption, unless it is extreme. However, new Keck/LRIS
optical spectroscopy reveals a previously unreported broad H-alpha line which
is highly unlikely to be visible under the extreme absorption scenario. We
therefore conclude that the black hole in this nucleus has undergone a dramatic
drop in accretion rate. From AO-assisted near-infrared integral-field
spectroscopy of the other nucleus, we find evidence that the galaxy merger is
having a direct effect on the kinematics of the gas close to the nucleus of the
galaxy, providing a direct observational link between the galaxy merger and the
mass accretion rate on to the black hole.Comment: Accepted for publication in Ap
- …