30 research outputs found

    Management of cytoskeleton architecture by molecular chaperones and immunophilins

    Get PDF
    Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, heat-shock proteins and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the roles of heat-shock proteins and immunophilins are not only limited to solve abnormal situations, but they also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. Cytoskeleton modifications leading to altered localization of nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, cytoskeletal components are attractive therapeutic targets, particularly microtubules, to prevent pathological situations such as rapidly dividing tumor cells or to favor the process of cell differentiation in other cases. In this review we will address some classical and novel aspects of key regulatory functions of heat-shock proteins and immunophilins as housekeeping factors of the cytoskeletal network.Fil: Quintá, Héctor Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Galigniana, Natalia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Erlejman, Alejandra Giselle. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Lagadari, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Piwien Pilipuk, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Galigniana, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentin

    ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation

    Get PDF
    The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-κB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs

    Impairment of mineralocorticoid receptor (MR)-dependent biological response by oxidative stress and aging: Correlation with post-translational modification of MR and decreased ADP-ribosylatable level of elongation factor 2 in kidney cells

    No full text
    Acute and chronic treatments of mice with the glutathione-depleting agent, L-buthionine-(SR)-sulfoximine (BSO), impaired the mineralocorticoid receptor (MR)-dependent biological response by inhibiting aldosterone binding. This steroid-binding inhibition was fully reversed when reducing agents were added to kidney cytosol obtained from mice treated for 5 h, but it was only partially reversed in cytosol obtained from mice treated for 10 days. Although the oligomeric structure of the MR-hsp90 heterocomplex was always unaffected, a decreased amount of MR protein was evidenced after the long term treatment. Such a deleterious effect was correlated with a post-translational modification of MR, as demonstrated by an increased level of receptor carbonylation. In addition, a failure at the elongation/termination step was also observed during the receptor translation process in a reticulocyte lysate system. Thus, a high polyribosomes/monomers ratio and both increased proteolysis and decreased ADP-ribosylatable concentration of elongation factor 2 (EF-2) were shown. Importantly, similar observations were also performed in vivo after depletion of glutathione. Notwithstanding the EF-2 functional disruption, not all renal proteins were equally affected as the MR. Interestingly, both EF-2 and MR expressed in old mice were similarly affected as in L-buthionine-(SR)-sulfoximine-treated young mice. We therefore propose that a dramatic depletion of glutathione in kidney cells mimics the cumulative effect of aging which, at the end, may lead to a renal mineralocorticoid dysfunction

    The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events

    No full text
    In this study, we demonstrate that the subcellular localization of the mineralocorticoid receptor (MR) is regulated by tetratricopeptide domain (TPR) proteins. The high-molecular-weight immunophilin (IMM) FKBP52 links the MR-hsp90 complex to dynein/dynactin motors favoring the cytoplasmic transport of MR to the nucleus. Replacement of this hsp90-binding IMM by FKBP51 or the TPR peptide favored the cytoplasmic localization of MR. The complete movement machinery, including dynein and tubulin, could be recovered from paclitaxel/GTP-stabilized cytosol and was fully reassembled on stripped MR immune pellets. The whole MR-hsp90-based heterocomplex was transiently recovered in the soluble fraction of the nucleus after 10 min of incubation with aldosterone. Moreover, cross-linked MR-hsp90 heterocomplexes accumulated in the nucleus in a hormone-dependent manner, demonstrating that the heterocomplex can pass undissociated through the nuclear pore. On the other hand, a peptide that comprises the DNA-binding domain of MR impaired the nuclear export of MR, suggesting the involvement of this domain in the process. This study represents the first report describing the entire molecular system that commands MR nucleocytoplasmic trafficking and proposes that the MR-hsp90-TPR protein heterocomplex is dissociated in the nucleus rather than in the cytoplasm. Copyright © 2010, American Society for Microbiology. All Rights Reserved.Fil:Monte, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Modification of an essential amino group in the mineralocorticoid receptor evidences a differential conformational change of the receptor protein upon binding of antagonists, natural agonists and the synthetic agonist 11,19-oxidoprogesterone

    No full text
    The alkylation of amino groups of the mineralocorticoid receptor (MR) with pyridoxal 5′-phosphate or 2,4,6-trinitrobenzenesulphonate (TNBS) under controlled conditions modifies only one lysyl residue, which accounts for a 70% inhibition of steroid binding capacity. The Kd of aldosterone for MR is not affected by the treatment, but the total number of binding sites is greatly decreased. The modified receptor is capable of dynamically conserving its association with the hsp90-based heterocomplex. Importantly, the binding of natural agonists protects the hormone binding capacity of the MR from the inactivating action of alkylating agents. In contrast, antagonistic steroids are totally incapable of providing such protection. Like the antagonistic ligands, and despite its potent mineralocorticoid biological effect, the sole MR specific synthetic agonist known to date, 11,19-oxidoprogesterone (11-OP), shows no protective effect upon treatment of the MR with pyridoxal 5′-phosphate or TNBS. Limited digestion of the MR with α-chymotrypsin generates a 34 kDa fragment, which becomes totally resistant to digestion upon binding of natural agonists, but not upon binding of antagonists. Interestingly, the synthetic 21-deoxypregnanesteroid 11-OP exhibits an intermediate pattern of proteolytic degradation, suggesting that the conformational change generated in the MR is not equivalent to that induced by antagonists or natural agonists. We conclude that in the first steps of activation, the MR changes its conformation upon binding of the ligand. However, the nature of this conformational change depends on the nature of the ligand. The experimental evidence shown in this work suggests that a single lysyl group can determine the hormone specificity of the MR. © 2002 Elsevier Science B.V. All rights reserved.Fil:Ghini, A.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Burton, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Biological Actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52

    Get PDF
    Immunophilins are a family of proteins whose signature domain is the peptidylprolyl-isomerase domain. High molecular weight immunophilins are characterized by the additional presence of tetratricopeptide-repeats (TPR) through which they bind to the 90-kDa heat-shock protein (Hsp90), and via this chaperone, immunophilins contribute to the regulation of the biological functions of several client-proteins. Among these Hsp90-binding immunophilins, there are two highly homologous members named FKBP51 and FKBP52 (FK506-binding protein of 51-kDa and 52-kDa, respectively) that were first characterized as components of the Hsp90-based heterocomplex associated to steroid receptors. Afterwards, they emerged as likely contributors to a variety of other hormone-dependent diseases, stress-related pathologies, psychiatric disorders, cancer, and other syndromes characterized by misfolded proteins. The differential biological actions of these immunophilins have been assigned to the structurally similar, but functionally divergent enzymatic domain. Nonetheless, they also require the complementary input of the TPR domain, most likely due to their dependence with the association to Hsp90 as a functional unit. FKBP51 and FKBP52 regulate a variety of biological processes such as steroid receptor action, transcriptional activity, protein conformation, protein trafficking, cell differentiation, apoptosis, cancer progression, telomerase activity, cytoskeleton architecture, etc. In this article we discuss the biology of these events and some mechanistic aspects

    Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore

    No full text
    In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and MR (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling. All members of the steroid receptor family are known to form large oligomeric structures with the heat-shock proteins of 90-kDa (hsp90) and 70-kDa (hsp70), the small acidic protein p23, and a tetratricopeptide repeat (TPR)-domain protein such as FK506-binding proteins (FKBPs), cyclophilins (CyPs) or the serine/threonine protein phosphatase 5 (PP5). It has always been stated that the dissociation of the chaperone heterocomplex (a process normally referred to as receptor “transformation”) is the first step that permits the nuclear import of steroid receptors. However the experimental evidence is consistent with a model where the chaperone machinery is required for the retrotransport of the receptor through the cytoplasm and also facilitates the passage through the nuclear pore. Recent evidence indicates that the hsp90-based chaperone system also interacts with structures of the nuclear pore such as importin β and the integral nuclear pore glycoprotein Nup62 facilitating the passage of the untransformed receptor through the nuclear pore
    corecore