10 research outputs found
Genetic Deletion of Laminin Isoforms β2 and γ3 Induces a Reduction in Kir4.1 and Aquaporin-4 Expression and Function in the Retina
Glial cells such as retinal Müller glial cells are involved in potassium ion and water homeostasis of the neural tissue. In these cells, inwardly rectifying potassium (Kir) channels and aquaporin-4 water channels play an important role in the process of spatial potassium buffering and water drainage. Moreover, Kir4.1 channels are involved in the maintenance of the negative Müller cell membrane potential. The subcellular distribution of Kir4.1 and aquaporin-4 channels appears to be maintained by interactions with extracellular and intracellular molecules. Laminins in the extracellular matrix, dystroglycan in the membrane, and dystrophins in the cytomatrix form a complex mediating the polarized expression of Kir4.1 and aquaporin-4 in Müller cells.The aim of the present study was to test the function of the β2 and γ3 containing laminins in murine Müller cells. We used knockout mice with genetic deletion of both β2 and γ3 laminin genes to assay the effects on Kir4.1 and aquaporin-4. We studied protein and mRNA expression by immunohistochemistry, Western Blot, and quantitative RT-PCR, respectively, and membrane currents of isolated cells by patch-clamp experiments. We found a down-regulation of mRNA and protein of Kir4.1 as well as of aquaporin-4 protein in laminin knockout mice. Moreover, Müller cells from laminin β2 and γ3 knockout mice had reduced Kir-mediated inward currents and their membrane potentials were more positive than those in age-matched wild-type mice.These findings demonstrate a strong impact of laminin β2 and γ3 subunits on the expression and function of both aquaporin-4 and Kir4.1, two important membrane proteins in Müller cells
Adaptive preconditioning in neurological diseases -Â therapeutic insights from proteostatic perturbations
International audienceIn neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson´s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses - and the molecular pathways they recruit - might be exploited for therapeutic gai
Brain-derived neurotrophic factor modulates the development of the dopaminergic network in the rodent retina
Dopaminergic cells in the retina express the receptor for brain-derived neurotrophic factor (BDNF) (Cellerino and Kohler, 1997). To investigate whether BDNF can influence the development of the retinal dopaminergic pathway, we performed intraocular injections of BDNF during the second or third postnatal week and visualized the dopaminergic system with tyrosine hydroxylase (TH) immunohistochemistry. Both regimens of BDNF treatment caused an increase in TH immunoreactivity in stratum 1 and stratum 3 of the inner plexiform layer (IPL). D2 dopamine receptor immunoreactivity, a presynaptic marker of dopaminergic cells (Veruki, 1996), was also increased in stratum 1 and stratum 3 of the inner plexiform layer. These data suggest that BDNF causes sprouting of dopaminergic fibers in the inner plexiform layer. Other neurochemical systems, for example, the cholinergic amacrine cells, remained unaffected. Similar effects were observed after injections of neurotrophin-3 and neurotrophin-4, but not nerve growth factor. Analysis of whole-mounted TH-immunolabeled retinae revealed hypertrophy of dopaminergic cells (+41% in soma areas;p< 0.01) and an increase of labeled dopaminergic varicosities in stratum 1 of the IPL (+51%;p< 0.01) after BDNF treatment. The opposite was observed in mice homozygous for a null mutation of thebdnfgene: dopaminergic cells were atrophic (−22.5% in soma areas;p< 0.05), and the density of TH-positive varicosities in stratum 1 was reduced (57%;p< 0.01). We conclude that BDNF controls the development of the retinal dopaminergic network and may be particularly important in determining the density of dopaminergic innervation in the retina.</jats:p