113 research outputs found
Exponential families of mixed Poisson distributions
If I=(I1,…,Id) is a random variable on [0,∞)d with distribution μ(dλ1,…,dλd), the mixed Poisson distribution MP(μ) on View the MathML source is the distribution of (N1(I1),…,Nd(Id)) where N1,…,Nd are ordinary independent Poisson processes which are also independent of I. The paper proves that if F is a natural exponential family on [0,∞)d then MP(F) is also a natural exponential family if and only if a generating probability of F is the distribution of v0+v1Y1+cdots, three dots, centered+vqYq for some qless-than-or-equals, slantd, for some vectors v0,…,vq of [0,∞)d with disjoint supports and for independent standard real gamma random variables Y1,…,Yq
The randomization by Wishart laws and the Fisher information
Consider the centered Gaussian vector in with covariance matrix Randomize such that has a Wishart distribution
with shape parameter and mean We compute the density
of as well as the Fisher information of the
model when is the parameter. For using the
Cram\'er-Rao inequality, we also compute the inverse of . The
important point of this note is the fact that this inverse is a linear
combination of two simple operators on the space of symmetric matrices, namely
and . The Fisher information itself is a linear
combination and Finally, by
randomizing itself, we make explicit the minoration of the second
moments of an estimator of by the Van Trees inequality: here again,
linear combinations of and appear in the results.Comment: 11 page
One-sided Cauchy-Stieltjes Kernel Families
This paper continues the study of a kernel family which uses the
Cauchy-Stieltjes kernel in place of the celebrated exponential kernel of the
exponential families theory. We extend the theory to cover generating measures
with support that is unbounded on one side. We illustrate the need for such an
extension by showing that cubic pseudo-variance functions correspond to
free-infinitely divisible laws without the first moment. We also determine the
domain of means, advancing the understanding of Cauchy-Stieltjes kernel
families also for compactly supported generating measures
A characterization related to the equilibrium distribution associated with a polynomial structure
Let f be a probability density function on (a, b) C (0, infinity) and consider the class Cf of all probability density functions of the form Pf where P is a polynomial. Assume that if X has its density in Cf then the equilibrium probability density x -> P(X > x)/E(X) also belongs to Cf : this happens for instance when f(x) = Ce-¿x or f(x) = C(b-x) ¿-1. The present paper shows that actually they are the only possible two cases. This surprising result is achieved with an unusual tool in renewal theory, by using ideals of polynomials
A characterization related to the equilibrium distribution associated with a polynomial structure
Let f be a probability density function on (a, b) C (0, infinity) and consider the class Cf of all probability density functions of the form Pf where P is a polynomial. Assume that if X has its density in Cf then the equilibrium probability density x -> P(X > x)/E(X) also belongs to Cf : this happens for instance when f(x) = Ce-¿x or f(x) = C(b-x) ¿-1. The present paper shows that actually they are the only possible two cases. This surprising result is achieved with an unusual tool in renewal theory, by using ideals of polynomials
General moments of the inverse real Wishart distribution and orthogonal Weingarten functions
Let be a random positive definite symmetric matrix distributed according
to a real Wishart distribution and let be its inverse
matrix. We compute general moments explicitly. To do so, we employ the orthogonal Weingarten
function, which was recently introduced in the study for Haar-distributed
orthogonal matrices. As applications, we give formulas for moments of traces of
a Wishart matrix and its inverse.Comment: 29 pages. The last version differs from the published version, but it
includes Appendi
Subsystem dynamics under random Hamiltonian evolution
We study time evolution of a subsystem's density matrix under unitary
evolution, generated by a sufficiently complex, say quantum chaotic,
Hamiltonian, modeled by a random matrix. We exactly calculate all coherences,
purity and fluctuations. We show that the reduced density matrix can be
described in terms of a noncentral correlated Wishart ensemble for which we are
able to perform analytical calculations of the eigenvalue density. Our
description accounts for a transition from an arbitrary initial state towards a
random state at large times, enabling us to determine the convergence time
after which random states are reached. We identify and describe a number of
other interesting features, like a series of collisions between the largest
eigenvalue and the bulk, accompanied by a phase transition in its distribution
function.Comment: 16 pages, 8 figures; v3: slightly re-structured and an additional
appendi
Large deviations for clocks of self-similar processes
The Lamperti correspondence gives a prominent role to two random time
changes: the exponential functional of a L\'evy process drifting to
and its inverse, the clock of the corresponding positive self-similar process.
We describe here asymptotical properties of these clocks in large time,
extending the results of Yor and Zani
Nonparametric Information Geometry
The differential-geometric structure of the set of positive densities on a
given measure space has raised the interest of many mathematicians after the
discovery by C.R. Rao of the geometric meaning of the Fisher information. Most
of the research is focused on parametric statistical models. In series of
papers by author and coworkers a particular version of the nonparametric case
has been discussed. It consists of a minimalistic structure modeled according
the theory of exponential families: given a reference density other densities
are represented by the centered log likelihood which is an element of an Orlicz
space. This mappings give a system of charts of a Banach manifold. It has been
observed that, while the construction is natural, the practical applicability
is limited by the technical difficulty to deal with such a class of Banach
spaces. It has been suggested recently to replace the exponential function with
other functions with similar behavior but polynomial growth at infinity in
order to obtain more tractable Banach spaces, e.g. Hilbert spaces. We give
first a review of our theory with special emphasis on the specific issues of
the infinite dimensional setting. In a second part we discuss two specific
topics, differential equations and the metric connection. The position of this
line of research with respect to other approaches is briefly discussed.Comment: Submitted for publication in the Proceedings od GSI2013 Aug 28-30
2013 Pari
Combinatorial Markov chains on linear extensions
We consider generalizations of Schuetzenberger's promotion operator on the
set L of linear extensions of a finite poset of size n. This gives rise to a
strongly connected graph on L. By assigning weights to the edges of the graph
in two different ways, we study two Markov chains, both of which are
irreducible. The stationary state of one gives rise to the uniform
distribution, whereas the weights of the stationary state of the other has a
nice product formula. This generalizes results by Hendricks on the Tsetlin
library, which corresponds to the case when the poset is the anti-chain and
hence L=S_n is the full symmetric group. We also provide explicit eigenvalues
of the transition matrix in general when the poset is a rooted forest. This is
shown by proving that the associated monoid is R-trivial and then using
Steinberg's extension of Brown's theory for Markov chains on left regular bands
to R-trivial monoids.Comment: 35 pages, more examples of promotion, rephrased the main theorems in
terms of discrete time Markov chain
- …