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A Characterization Related to the Equilibrium
Distribution Associated with a Polynomial

Structure

Shaul K. Bar-Lev∗, Onno Boxma†, Gérard Letac ‡

September 21, 2009

Abstract
Let f be a probability density function on (a, b) ⊂ (0,∞) and

consider the class Cf of all probability density functions of the form
Pf where P is a polynomial. Assume that if X has its density in
Cf then the equilibrium probability density x 7→ P (X > x)/E(X)
also belongs to Cf : this happens for instance when f(x) = Ce−λx or
f(x) = C(b − x)λ−1. The present paper shows that actually they are
the only possible two cases. This surprising result is achieved with an
unusual tool in renewal theory, by using ideals of polynomials.

Keywords: Renewal theory; excess life time; polynomial densities;
ideals of polynomials.

1 Introduction: equilibrium distribution

Let X1, X2, . . . be a sequence of non-negative independent random variables
with a common distribution F , with probability density function (pdf) f
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and Laplace-Stieltjes transform (LST) φ. Letting µ = E(Xi), it is assumed
that 0 < µ < ∞. The random variable Xi denotes the interoccurrence
time between the (i− 1)th and ith event in some probability problem. The
counting process {N(t), t ≥ 0}, where N(t) is the largest integer n ≥ 0
such that X1 + · · · + Xn ≤ t, is called the renewal process generated by the
interoccurrence times X1, X2, . . . (cf. the classical textbooks [3, 4, 5]). An
important role in renewal theory is played by the backward recurrence time
At (the time since the last renewal before t) and the forward recurrence time
Bt (the time until the first renewal after t). If the Xi are interpreted as life
times, then At is the past life time at t and Bt the residual or excess life time
at t. It is well-known that the limiting distributions of At and Bt for t→∞
are given by (with X a generic random variable with distribution F ):

lim
t→∞

P (At ≤ x) = lim
t→∞

P (Bt ≤ x) =

∫ x

y=0

P (X > y)

µ
dy. (1)

Denote this limiting or equilibrium excess life time distribution by Fe, and
its pdf by fe(x) = P (X > x)/µ =

∫∞
x

f(y)
µ

dy. Its LST is given by

ϕe(s) =

∫ ∞

x=0

e−sxdFe(x) =
1− ϕ(s)

sµ
. (2)

A delayed renewal process is defined just like an ordinary renewal process,
except that X1 has a different distribution. If X1 has distribution Fe, then
the process begins at time 0 in equilibrium, and then the excess life time at
any time t ≥ 0 has distribution Fe; cf. Section 3.5 of Ross [4].

The equilibrium excess life time distribution can be given the following
interpretation (Tijms [5] p. 11). Suppose that an outside person observes
the state of the process at an arbitrarily chosen point in time when the
process has been in operation since a very long time. Assuming that the
outside observer has no information about the history of the process, the
best prediction the person can give about the residual time until the next
renewal is according to the equilibrium excess life time distribution.

Excess life times play an extremely important role in applied probability.
They arise in a host of real-life problems, ranging from reliability theory
to inventory and queueing theory. For example, the celebrated Pollaczek-
Khintchine formula, arguably the most important formula in queueing theory,
gives an expression for the LST of the distribution of the steady-state waiting
time W in an M/G/1 queue, i.e., a single server queue with Poisson arrivals
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of customers and generally distributed service times X1, X2, . . . , with service
in First-Come-First-Served (FCFS) order ([1], Ch. VIII):∫ ∞

x=0

e−sxdP (W ≤ x) =
1− ρ

1− ρϕe(s)
. (3)

Here ρ denotes the load, i.e., the product of arrival rate and mean service
requirement. Inversion shows that

P (W ≤ x) =
∞∑
n=0

(1− ρ)ρnP (X̃1 + · · ·+ X̃n ≤ x), (4)

where X̃i ∼ Fe, i = 1, 2, . . . , n. Cooper and Niu [2] interpret this formula
by explaining that (1) the waiting time distribution in M/G/1 FCFS equals
the distribution of the workload in this queue, and that (2) by work con-
servation this equals the distribution of the workload in the M/G/1 queue
with the service discipline Last-Come-First-Served Preemptive-Resume (i.e.,
immediately take the newest arrival into service; notice that each waiting
customer has already received some service), and that (3) in the latter sys-
tem, the number of customers is geometrically distributed with parameter ρ
while all residual service times are independent and identically distributed
with distribution Fe.

More generally speaking, in many queueing problems one needs to know
the time until the next arrival (residual interarrival time) or the time until
completion of the ongoing service (residual service time). And in reliability
and maintenance problems, one needs to know the time until breakdown of a
machine, or until an ongoing repair is completed; etc. We refer to Chapter 1
of [5] for a host of other examples, which confirm the importance of obtaining
insight into the characteristics of the distribution of the residual life time.

A related important random variable is XN(t)+1, the length of the renewal

interval seen by an outside observer at t. Denote by X̂ a random variable
with distribution the limiting distribution of XN(t)+1. Its steady-state pdf is

yf(y)/µ and P (X̂ > x) =
∫∞
x

yf(y)
µ

dy.
In Section 2 we shall see that, for the classes of exponential, Erlang and

hyperexponential distributions, the pdf fe, and also the pdf of X̂, are again
exponential, Erlang, hyperexponential, or mixtures of those. The beta distri-
bution has a similar closure property. That has led us to study a much more
general question: which pdf’s have the property that, for any polynomial
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P , we have that
∫ b

x
P (t)f(t)dt can be written in the form of a product of

another polynomial and f(x)? This question is answered in our main result,
Proposition 3.1 in Section 3. But first, in Section 2, we provide several exam-
ples where we demonstrate the property of Proposition 3.1. In considering
these examples, it should be realized that P (t)f(t) is also a pdf, up to a
multiplicative constant.

2 Examples

In this section we consider two examples. One is related to the exponential
distribution, the other to the beta distribution.

1. A. If X ∼ exp(λ), i.e., ϕ(s) = λ/(λ + s), then ϕe(s) = ϕ(s), and
fe(x) = f(x): the residual life time is again exponential. Of course,
this is the familiar memoryless property.

B. If ϕ is the LST of a hyper-exponential distribution (i.e., of a mixture
of exponential distributions) in the form

ϕ(s) =
k∑
i=1

piϕi(s), (5)

with

ϕi(s) = λi/(λi + s), pi > 0, i = 1, ..., k,
k∑
i=1

pi = 1, (6)

then Fe is also hyper-exponential with different weights p∗i : fe(x) =Pk
i=1 pie

−λixPk
i=1 pi/λi

.

C. If F is Erlang(n), i.e., f(x) = λn xn−1

(n−1)!
e−λx, x > 0 and ϕ(s) =

[λ/(λ+ s)]n, n ∈ N, then Fe is a mixture of Erlang(i) with weights
pi = 1/n, i = 1, ..., n, i.e.,

ϕe(s) =
n∑
i=1

piϕi(s), ϕi(s) = [λ/(λ+ s)]i , i = 1, ..., n. (7)

D. If F is a mixture of Erlang(i), i = 1, ..., n, i.e.,

ϕ(s) =
k∑
i=1

piϕi(s), (8)
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with

ϕi(s) = [λ/(λ+ s)]i , pi > 0, i = 1, ..., n,
n∑
i=1

pi = 1, (9)

then Fe is also a mixture of Erlang(i), i = 1, ..., n with different weights
p∗i given by

p∗i =
n∑
j=i

pj
n∑
k=1

kpk

, i = 1, ..., n.

Indeed, note that
n∑
i=1

p∗i = 1.

In all of the above examples Fe is a mixture of exponential distributions
or a mixture of convolutions of exponential distributions; or, equiva-
lently, the related pdf fe has the form

fe(x) =
n∑
i=1

Pi(x)e−λix, (10)

where n ∈ N, Pi(x) is a polynomial in x and λi > 0. A similar statement
holds for P (X̂ > x) = 1

µ

∫∞
x
tf(t)dt. It should further be noticed that

in each of the examples 1A,...,1D, we have a pdf of the form P (t)f(t)

with P a polynomial and f an exponential; and
∫ b

x
P (t)f(t)dt has the

form of the product of another polynomial and f .

2. Now consider the beta pdf f(x) = (x−a
b−a )ζ−1( b−x

b−a)λ−1 1
(b−a)B(ζ,λ)

, where

B(ζ, λ) =
∫ 1

0
xζ−1(1 − x)λ−1dx is the beta function. If ζ = 1, then

fe(x) = (b−x)λ
(b−a)λ , which is again a beta pdf with ζ = 1. We see here a

similar closure property as in the previous example. We could also have
taken a weighted sum of beta pdf’s multiplied by polynomials, and it
is easily seen that taking the integration

∫ b

x
w.r.t. such a sum results

in other polynomials multiplied by beta pdf’s.

This raises the following question. For which pdf’s f (or, equivalently,
LST’s ϕ) is the equilibrium pdf in (1) a pdf in the same ‘class’ of pdf’s as f ,
or a polynomial multiplied with f? In the next section we introduce such a
closure property in a more general setting, and we prove a characterization
result: If f is concentrated on 0 ≤ a < b ≤ ∞, then which pdf’s f have
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the property that, for any polynomial P , we have that
∫ b

x
P (t)f(t)dt can be

written in the form of a product of another polynomial and f(x)? We show
the following in Proposition 3.1 in the next section: A necessary and sufficient
condition for this to hold is that either b =∞ and f(x) = Ce−λx where λ > 0

and 1/C =
∫ b

a
(t− a)f(t)dt, or that b is finite and f(x) = C(b− x)λ−1, i.e., f

is either exponential or of a beta type.

3 The main result

Let f be a pdf on (a, b) with 0 ≤ a < b ≤ ∞ such that 1/C =
∫ b

a
(t −

a)f(t)dt <∞. Consider the new pdf on (a, b) defined by T (f)(x) = C
∫ b

x
f(t)dt.

Notice that, up to a multiplicative constant, this is fe(x). For instance if
(a, b) = (0,∞) consider the class F of the pdf’s of the form

f(x) =
n∑
i=1

Pi(x)e−λix

where Pi(x) is a polynomial and λi > 0. Because of the formula∫ ∞

x

λn
tn−1

(n− 1)!
e−λtdt =

n−1∑
k=0

λk
xk

k!
e−λx, (11)

clearly T (f) is also in F . A similar situation occurs when considering a
bounded interval (a, b) and the class G of pdf’s on (a, b) which are polynomials
P multiplied by the function f(x) = (b−x)λ−1 where λ > 0. Here, G is stable
by T , meaning that T (G) ⊂ G (write P (x)f(x) in the form

∑n
k=0 pk(b −

x)k+λ−1 to be convinced of this fact). Of course, choosing a class C of pdf’s
on (a, b) having all their moments implies that the class of pdf’s defined by

C1 =
∞⋃
n=0

T n(C)

is stable by T. But we are going to show that the classes F and G above are
unique in the following sense:

Proposition 3.1. Let f be a positive function on (a, b) with 0 ≤ a < b ≤ ∞
such that

∫ b

a
tnf(t)dt <∞ for any non-negative integer n. Suppose that for
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any polynomial P there exists a polynomial A(P ) such that for all x ∈ (a, b)
we have ∫ b

x

P (t)f(t)dt = A(P )(x)f(x). (12)

Then there exist C, λ > 0 such that either b is infinite and f(x) = Ce−λx, or
b is finite and f(x) = C(b− x)λ−1.

Comments. Thus this statement describes the few functions f on (a, b) such
that the class Cf of pdf’s of the form P (x)f(x) is stable by the operation T
described above, with T (Pf) = A(P )f. Note that in both cases a is not
necessarily 0. For instance, if f(x) = e−λx if (a, b) = (a,∞) and P (x) =
λnxn−1/(n− 1)!, we have (cf. (11)):

A(P )(x) =
n−1∑
k=0

λkxk/k!. (13)

Note that A(1) = 1/λ. Since A is a linear operator, these formulas describe
A completely. Similarly if f is (b− x)λ−1 on the bounded interval (a, b) and
if P (x) = (b− x)n we have

A(P )(x) = (b− x)n+1/(n+ λ). (14)

For instance A(1) = (b− x)/λ.
Let us also insist on the fact that the proposition describes really the only

two possible cases. One could be tempted if f satisfies (12) to coin the new
function f1(x) = R(x)f(x) where R is a nonconstant polynomial which is
positive on (a, b) and to observe that for all polynomials P we have∫ b

x

P (t)f1(t)dt =
A(PR)(x)

R(x)
f1(x).

A consequence of the proposition is that it is impossible thatR dividesA(PR)
for all polynomials P.

Proof of Proposition 3.1. For P ≡ 1 we denote Q(x) = A(1)(x). Writing∫ b

x
f(t)dt = Q(x)f(x) shows that the polynomial Q must be positive on (a, b).

Since f is integrable, thus writing f(x) = 1
Q(x)

∫ b

x
f(t)dt shows that f must

be continuous, thus differentiable, thus infinitely differentiable. Now taking
derivative in x of

∫ b

x
P (t)f(t)dt = A(P )(x)f(x) gives the differential equation

−P (x)f(x) = A(P )′(x)f(x) + A(P )(x)f ′(x)
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that we rewrite as
f ′(x)

f(x)
= −P (x) + A(P )′(x)

A(P )(x)
.

Note that since the left hand side of this equation does not depend on P ,
we can get information on A(P ) by replacing P by 1, getting the following
differential equation in A(P )

P (x) + A(P )′(x)

A(P )(x)
=

1 +Q′(x)

Q(x)
.

As a consequence all information on f and A(P ) is actually given by the
polynomial Q.

The case of Q of degree 0. If Q is the nonzero constant 1/λ, the
equation f ′/f = −(1 + Q′)/Q gives f(x) = e−λx on (a, b). If b = ∞, we

have already seen that if λ > 0 the identity
∫ b

x
P (t)f(t)dt = A(P )(x)f(x)

holds for a suitable operator A defined by (13). If λ ≤ 0, the condition∫ b

a
tnf(t)dt <∞ is not fulfilled. If b <∞ then

∫ b

x
P (t)f(t)dt = A(P )(x)f(x)

does not hold since for P = λ we get∫ b

x

λe−λtdt = e−λx − e−λb

which is not of the desired form of a polynomial multiplied by e−λx.

The case of Q of degree 1. IfQ is a first degree polynomial we write it as
Q(x) = (b1−x)/λ where b1 is a real number and λ is a nonzero number. From
the equation f ′/f = −(1 + Q′)/Q on (a, b) we get that f(x) = C|b1 − x|λ−1

for some positive number C. Suppose that b =∞. Clearly
∫∞
a
tnf(t)dt <∞

is impossible if n is big enough. Thus b <∞. Now for all x in (a, b) we have∫ b

x
|b1− t|λ−1dt = |b1−x|λ/|λ|. Since the left hand side must converge to zero

when x→ b, this would imply that b = b1 and that λ > 0.

The case of Q of degree ≥ 2. We now claim that Q has necessarily
degree ≤ 1, a more difficult part of the proof. Suppose that Q has degree
≥ 2 and however suppose that the differential equation QP = (1+Q′)Y −QY ′
has always a polynomial solution Y = A(P ) for any polynomial P.

To reach a contradiction, we introduce three notations: we denote by A
the ring of polynomials with real coefficients. If A ∈ A we denote by IA the
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ideal generated by A, that is the set of polynomials divisible by A:

IA = {AP ;P ∈ A}.

Finally we consider the endomorphism ϕ of A defined by

Y 7→ ϕ(Y ) = (1 +Q′)Y −QY ′.

Assuming that QP = ϕ(Y ) has a solution Y in A for each P ∈ A is saying
that the image ϕ(A) of ϕ contains the ideal IQ.

Lemma 3.2. Let B0 and C0 be two polynomials and consider the endomor-
phism ϕ0 of A defined by

ϕ0(Y ) = B0Y − C0Y
′.

One assumes that ϕ0(A) ⊃ IC0 . Then there exists A1, B1, C1 ∈ A such
that ϕ0(A) = IA1 , B0 = A1B1 and C0 = A1C1. Furthermore if ϕ1(Y ) =
B1Y − C1Y

′ we have ϕ1(A) ⊃ IC1 .

Proof. We show that ϕ0(A) is an ideal: Choose Y0 and P in A. Since
ϕ0(A) ⊃ IC0 , there exists Y1 ∈ A such that ϕ0(Y1) = C0P

′Y0. Thus

ϕ0(PY0 + Y1) = ϕ0(PY0) + ϕ0(Y1) = B0PY0 − C0PY
′
0 − C0P

′Y0 + ϕ0(Y1)

= B0PY0 − C0PY
′
0 = Pϕ0(Y0)

which shows that ϕ0(A) is an ideal of A. Since any ideal in A is principal,
there exists A1 such that ϕ0(A) = IA1 . Since IA1 ⊃ IC0 we get that A1

divides C0. Thus, there exists C1 such that C0 = A1C1. Since ϕ0(Y ) =
B0Y − C0Y

′ = B0Y − A1C1Y
′ is a multiple of A1 for any Y , we get that

B0 = ϕ0(1) = A1B1 is also a multiple of A1. Finally, since for each P there
exists Y such that ϕ0(Y ) = B0Y − C0Y

′ = C0P , this implies that the same
Y satisfies ϕ1(Y ) = B1Y − C1Y

′ = C1P , which shows ϕ1(A) ⊃ IC1 . �

We now iterate Lemma 3.2 : For each n = 1, 2, . . . there exist An, Bn, Cn
such that

B0 = A1A2 . . . AnBn, C0 = A1A2 . . . AnCn

and such that if we denote ϕn(Y ) = BnY − CnY ′ we have ϕn(A) = IAn+1 ⊃
ICn . Thus for n big enough, An+1 must be a constant polynomial, which is
equivalent to saying that ϕn is surjective.
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We now apply the above considerations to the particular case where B0 =
1 +Q′ and C0 = Q, where Q is a polynomial of degree d0 ≥ 2. Thus ϕ = ϕ0

in the lemma. With this choice of (B0, C0) we show that whatever n is, the
map ϕn cannot be surjective when the degree of Q is ≥ 2. Write

Q(x) = C0(x) = c0x
d0 + terms of lower degree,

and more generally

Cn(x) = cnx
dn+terms of lower degree, Bn(x) = bnx

dn−1+terms of lower degree.

We show by induction on n that bn = d0cn. This is obvious for n = 0 since
B0 = 1 + Q′ and since d0 ≥ 2. Suppose that it is true for n − 1. Since
Bn−1 = AnBn and Cn−1 = AnCn and if the term of maximum degree of An is
anx

m then dn−1 = dn +m, bn−1 = anbn and cn−1 = ancn. Since by definition
an 6= 0, the equality bn = d0cn holds.

We finally use this fact to prove that ϕn cannot be surjective by showing
that there is no Y such that

ϕn(Y )(x) = Bn(x)Y (x)− Cn(x)Y ′(x) = xd0+dn−1

holds. For suppose that there exists such a Y, with highest degree term αxm.
The highest degree term of BnY −CnY ′ is (d0−m)αcnx

dn+m−1 if m 6= d0 and
cannot be equal to xd0+dn−1. If m = d0 the highest degree term of BnY −CnY ′
has degree less than d0 + dn − 1. We get the desired contradiction. �
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