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Abstract

If I = (I1, . . . , Id ) is a random variable on [0,∞)d with distribution l(dk1, . . . , dkd ), the mixed Poisson

distribution MP(l) on N
d is the distribution of (N1(I1), . . . , Nd (Id )) where N1, . . . , Nd are ordinary

independent Poisson processes which are also independent of I . The paper proves that if F is a natural

exponential family on [0,∞)d then MP(F) is also a natural exponential family if and only if a generating

probability of F is the distribution of v0 + v1Y1 + · · · + vqYq for some q 6d , for some vectors v0, . . . , vq

of [0,∞)d with disjoint supports and for independent standard real gamma random variables Y1, . . . , Yq .
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1. Introduction

Consider the Poisson distribution with parameter k > 0 defined by

P(k)(dx) =

∞
∑

n=0

e−k kn

n!
dn(dx).

If we randomize the parameter k by some probability l(dk) on (0,∞) we get a new probability

MP(l) on the set N of nonnegative integers defined by MP(l) =
∫∞

0 P(k)l(dk). We have the
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identifiability property: P(l) = P(l′) if and only if l = l′ : just compute the generating function

fMP(l)(z) =

∞
∑

n=0

znMP(l)({n})

of MP(l) and link it to the Laplace transform Ll(h) of l by fMP(l)(z) = Ll(z − 1). One sees

MP(l) as the distribution of N(I) where t 7→ N(t) is a standard Poisson process on N which

is independent of the random variable I with distribution l. One reason of the interest on these

mixed Poisson distributions lies on the fact that they are overdispersed, in the sense that their

variance is bigger than their mean. However, it should be pointed out that one easily constructs

an overdispersed distribution m concentrated on N such that no l with m = MP(l) can possibly

exist. An example is
∑∞

n=0 mnz
n = (1+ z+ z2)/(6− 3z). There is an abundant literature on the

topic for which Grandell [5] offers a good synthesis and references.

Suppose now that l belongs to a natural exponential family (NEF) F concentrated on [0,∞).

Denote by VF (m) its variance function defined on the domain of the means MF ⊂ (0,∞) in the

sense initiated by Morris [10]. We consider the model

MP(F) = {MP(l); l ∈ F }.

Let us start with the following simple observation: if l ∈ F has mean m then the variance of

MP(l) is m + VF (m). It is tantalizing to think that we have created a new natural exponential

family G with variance function VG such that MG ⊃ MF and such that VG(m) = m + VF (m)

on MF . This is false: if p > 1 is not an integer consider the NEF F such that MF = (1,∞) and

VF (m) = (m − 1)p. Such a NEF does exist from Bar-Lev and Enis [1] or Jorgensen [7]. Then

one sees that VG(m) = m + (m − 1)p is not a variance function: from Theorems 3.1 and 3.2

of Letac and Mora [8] one should have MG = (1,∞) and thus for m0 > 1 we would have the

contradiction
∫ m0

1

dm

m+ (m− 1)p
= ∞.

Furthermore, for some NEF F’s the function m+VF (m) can be actually the variance function of

some NEF G with no relation either with MP(F) or with F. A provocative example is VF (m) =

mp with p > 1 is not an integer and MF = (0,∞). In this case VG(m) = m+mp is the variance

function of a NEF such that MG = (0,∞) but G is concentrated on the additive semigroup

N + pN. For checking this it is enough is to compute the corresponding cumulant transform

and to observe that the elements of G must be infinitely divisible with a discrete Lévy measure

concentrated on N + pN. Finally Bent Jorgensen [7] offers a different construction of mixed

Poisson distributions from a NEF (see the remark in Section 3 below for a description of the

Jorgensen’s manner.)

Thus, a natural question is: if the NEF G exists do we have G ⊃ MP(F)? In Section 3

Theorem 1 says : yes, if and only if F is a gamma family, i.e. when there exists a number p > 0

such that VF (m) = m2/p. In this case G is a negative binomial NEF. Section 4 extends the

question to N
d . We randomize (k1, . . . , kd) in the product P(k1)(dx1) · · ·P(kd)(dxd) by the

probability l(dk) on [0,∞)d and consider the probability on N
d defined by

MP(l) =

∫ ∞

0

. . .

∫ ∞

0

P(k1) · · ·P(kd)l(dk1, . . . , dkd).

We get a similar characterization (Theorem 2) which is described in the abstract above. The

multivariate distributions which occur in Theorem 2 have been recently isolated and characterized
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by Konstancja Bobecka and Jacek Wesołowski [2] (details are given in Section 4). The proof of

Theorem 2 needs some care and the particular case d = 1 of Theorem 1 is a preparation to d >2.

Section 2 recalls some facts about NEF.

This study was motivated by statistical optics. Mixed Poisson distributions are commonly used

to model data recorded from low flux objects or with short exposure times using photocounting

cameras. This physical model arises from the semiclassical theory of statistical optics described in

Goodman [4]. In this theory, the classical theory of propagation is used up to the camera, leading

to a high flux image. Conditionally to this image, the number of photons counted on the pixels is

distributed according to a Poisson distribution whose mean is the high flux intensity.

A common problem for example in astrophysics is to estimate parameters of the wavefront

(the mixing distribution) from photocounts recorded on a set of pixels. A description is found

in Ferrari et al. [3]. A general assumption is that the vector of complex amplitudes associated

to adjacent pixels of the image is a zero mean Gaussian vector, which implies that the vector of

the corresponding intensities is distributed according to a multivariate gamma distribution. An

important question is to derive conditions ensuring that the associated mixed Poisson distribution

belongs to a NEF. This result is important since the computational complexity of most estimation

or detection methods is usually reduced when applied to distributions belonging to an NEF.

2. NEF on R and R
d

This section describes the notations and classical facts about natural exponential families,

mainly taken from Morris [10] and Letac and Mora [8]. Denote by

Lm(h) =

∫

R
d
e〈h,k〉m(dk)6∞

the Laplace transform of a positive measure m defined for h ∈ R
d not concentrated on any affine

hyperplane. The Hölder inequality proves that the set D(m) of h ∈ R
d such that Lm(h) < ∞ is

a convex set and that the cumulant function km = log Lm is a strictly convex function on this set.

Denote by H(m) the interior of D(m) and assume that H(m) is not empty. Then km is real analytic

on H(m). The set F(m) of probabilities

mh(dk) = e〈h,k〉−km(h)m(dk),

where h runs H(m) is called the NEF with generating measure m. Note that F(m) = F(m ′) does

not imply m = m ′ but implies only the existence of some a ∈ R
d and b ∈ R such that m(dk) =

e〈a,k〉+bm ′(dk). Thus, a member l of the NEF F(m) can always be taken as a generating measure.

However, some generating measures are not necessarily probabilities and can even be unbounded.

We mention also that h 7→ mh(dk) is called a canonical parametrization of the NEF. Other

parametrizations of the type

t 7→ ma(t)(dk) = e〈a(t),k〉+b(t)m(dk)

with b(t) = −km(a(t)), could be considered. Since h 7→ km(h) is a strictly convex function on the

open set H(m), the map

h 7→ m = k′m(h) =

∫

R
d
kmh(dk)

from H(m) to R
d is one to one. The open set MF = k′m(H(m)) is called the domain of the means

of F . Denote by m 7→ h = wm(m) the inverse function of k′m from MF onto H(m). The Hessian
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matrix k′′m (h) is the covariance matrix of the probability mh(dk). Denoting VF (m) = k′′m (wm(m)),

the map from MF to the positive definite symmetric matrices of order d defined by m 7→ VF (m)

is called the variance function of F . It characterizes F since its knowledge leads by integration of

a differential equation to the knowledge of the cumulant function of a generating measure of F .

3. The case of real exponential families

For d = 1, for p and a > 0 the gamma distribution with shape parameter p and scale parameter

a is

cp,a(dk) = e−k/a kp−1

ap
1(0,∞)(k)

dk

C(p)
. (1)

This is a member of the NEF F generated by m(dk) = kp−1

C(p)
1(k)dk. The domain of the means of

F is MF = (0,∞) and its variance function is VF (m) = m2/p. The Laplace transform of cp,a is

L(z) = 1
(1−az)p

with a suitable definition of this analytic function in {z ∈ C; ℜz < 1/a}: we have

simply to impose that it is real on the real axis. We see that the generating function of MP(cp,a)

is 1
(1+a−az)p

= (
1−q
1−qz

)p with the notation q = a/(1+ a) ∈ (0, 1). Thus, if N ∼ MP(cp,a) then

with the Pochhammer notation (p)0 = 1 and (p)k+1 = (p + k)(p)k we have

Pr(N = k) =
1

k!
(p)k(1− q)pqk =

1

k!
(p)k

ak

(1+ a)p+k
, (2)

a negative binomial distribution. This is a member of the NEF G of negative binomial distributions

generated by

∞
∑

k=0

1

k!
(p)kdk.

The domain of the means of G is MG = (0,∞) and its variance function is VF (m) = m+m2/p.

Thus, both F and G = MP(F) are NEF in this particular example. We show that this is the only

case:

Theorem 1. If the image of the NEF F(m) on [0,∞) by l 7→ MP(l) is still an NEF, then there

exists p > 0 such that F(m) is the family of gamma distributions with fixed shape parameter p.

Proof. Denote Lm(h) =
∫∞

0 ekhm(dk) for h ∈ H, where H is the interior of the convergence

domain of Lm(h). Note that H is either R or some half line (−∞, a). Suppose that the image of

F(m) by l 7→ MP(l) is an NEF on N generated by some measure
∑∞

n=0 pndn. Consequently,

there exists two functions a and b defined on H+ 1 such that for all n
∫ ∞

0

ek(h−1) k
n

n!
m(dk) = pne

na(h)+b(h), (3)

which can be rewritten

L(n)
m (h− 1) = n!pne

na(h)+b(h). (4)

Recall that m is concentrated on (0,∞) and thus that Lm is not a constant. Being a Laplace transform

the function Lm cannot be a polynomial and L
(n)
m cannot be identically 0. This implies pn 6= 0 for
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all n. Eq. (??) shows that a(h) and b(h) are real-analytic functions on the interval H+ 1. Indeed

h 7→ Lm(h − 1) is analytic in the half complex plane H + 1 + iR as well as its nth derivative

L
(n)
m (h− 1). Furthermore, since L

(n)
m (h− 1) is positive on H+ 1 (because pn > 0), its logarithm

is real-analytic. Consequently, na(h)+ b(h) and (n+ 1)a(h)+ b(h) are real-analytic on H+ 1,

which implies by linear combination that a(h) and b(h) are real-analytic on H + 1. This proves

the existence of a′(h) and b′(h). By taking the logarithms of both sides of (??) and differentiating

with respect to h we get

L
(n+1)
m (h− 1)

L
(n)
m (h− 1)

= na′(h)+ b′(h). (5)

We now fix h. Assume first that a = a′(h) 6= 0 and denote p = b′(h)/a′(h). Eq. (??) can be

written L
(n+1)
m (h− 1) = a(p+ n)L(n)(h− 1) hence L

(n)
m (h− 1) = Lm(h− 1)(p)na

n. Since m is

concentrated on (0,∞) we have L′m(h− 1) = a > 0. Since L′′m(h− 1) = pa2/2 > 0 we have

p > 0. The Taylor formula applied to the analytic function Lm for small values of h can be written

as follows:

Lm(h− 1+ h)=Lm(h− 1)

∞
∑

n=0

(p)n
(ah)n

n!

=Lm(h− 1)(1− ah)−p.

The result Lm(h−1+h)
Lm(h−1)

= (1− ah)−p is valid for any h ∈ (−∞, 1/a), since the Laplace transform

is an analytic function. The right-hand side of this expression is the Laplace transform of the

gamma distribution cp,a . Moreover, the Laplace transform of mh−1 is

∫ ∞

0

ekhmh−1(dk) =

∫ ∞

0

ek(h+h−1)

ekm(h−1)
m(dk) =

Lm(h− 1+ h)

Lm(h− 1)
,

which shows that mh−1 = cp,a . In other words, the exponential family for {MP(lh); h ∈ H} is

the family of gamma distributions with fixed shape parameter p.

If a′(h) = 0, (??) yields
L

(n+1)
m (h−1)

L
(n)
m (h−1)

= b′(h) which leads to

Lm(h− 1+ h)

Lm(h− 1)
= eb′(h)h.

This is the noninteresting case where m is a Dirac measure concentrated on the point b′(h). Our

definition of NEF excludes this and the proof of Theorem 1 is complete. �

Remark. For clarification it should be pointed out that Jorgensen [7, pp. 166–167] mentions a

different object. Given a NEF F = F(m) on (0,∞) and taking the number w in a suitable interval,

Bent Jorgensen considers a NEF Hw on N with a cumulant function of the form h 7→ km(w+ eh).

In this case, introducing the reciprocal function hw(m) of the map z 7→ zk′m(w+ z) he proves that

VHw
(m) = m+ VF

(

m

hw(m)

)

hw(m)2.

The Jorgensen’s construction seems motivated by the particular case VF (m) = mp with p>1

as considered by Hougaard et al. [6]. This family Hw is obtained from F by a Poisson mixing
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process, but in a slightly complicated way. For describing it adopt the following notation: if l is a

measure on R and c > 0 denote dcl the image of the measure l by the dilation x 7→ cx. Then Hw

is the set of all MP(dcmw+c) such that c is in H(m). For instance if F is a gamma family generated

by m(dk) = kp−1

C(p)
1(0,∞)(k) dk a simple calculation gives that Hw is a negative binomial NEF with

variance function

VHw
(m) = m+

w

p
m2.

4. The case of multivariate exponential families

A line multivariate gamma distribution governed by a nonzero vector (a1, . . . , ad) in [0,∞)d

and the parameter p is the distribution of the random variable X = (a1Y, . . . , adY ) where Y is a

real random variable with distribution cp,1. Its Laplace transform is

Ll(z) = E(e〈h,X〉) = (1− a1h1 − · · · − adhd)−p.

Its image by l 7→ MP(l) is the negative multinomial distribution on N
d with generating function

E(z
N1

1 . . . z
Nd

d ) = cp(1− c(a1z1 + · · · + adzd))−p

where c = (1 + a1 + · · · + ad)−1. If some of the a′is are zero, (say ai > 0 if and only if i6m)

then the half line image of [0,∞) by y 7→ (a1y, . . . , amy) is concentrated on [0,∞)m and the

corresponding distribution is concentrated on N
m.

For an integer 06q consider q + 1 subsets of {1, . . . , d} denoted by {T0, . . . , Tq} and such

that {1, . . . , d} = ∪
q

m=0Tm, Tm 6= ∅, ∀m>1 and Ti ∩ Tj = ∅, ∀i 6= j . Consider a product of line

multivariate gamma distributions concentrated on [0,∞)Tm for m = 1, . . . , q and a Dirac mass on

[0,∞)T0 . More specifically, consider a distribution m on [0,∞)d such that there exist nonnegative

numbers a1, . . . , ad and positive numbers p1, . . . , pq such that the Laplace transform of m is

Lm(h) = e
∑

k∈T0
akhk

q
∏

m=1



1−
∑

k∈Tm

akhk





−pm

. (6)

Another presentation of these distributions can be helpful. If v = (v(1), . . . , v(d)) is in [0,∞)d let

us call support of v the set of i ∈ {1, . . . , d} such that v(i) > 0. If we now define v
(i)
m = ai1Tm(i)

then the q + 1 vectors v0, . . . , vq of R
d have disjoint supports. Introduce the random variables

Ym with distribution cpm,1 such that (Y1, . . . , Yq) are independent. Then m defined by (??) is

the distribution of v0 + v1Y1 + · · · + vqYq . Conversely if v0, . . . , vq have disjoint supports the

distribution of v0 + v1Y1 + · · · + vqYq has type (??). These distributions (at least for v0 = 0)

have been characterized in Bobecka and Wesołowski [2] as follows: suppose that X and X′ are

independent random variables of (0,∞)d . Write

X

X +X′
=

(

X1

X1 +X′1
, . . . ,

Xd

Xd +X′d

)

Then they obtain an elegant multivariate version of a theorem due to Lukacs [9]: the random

variables X + X′ and X
X+X′

are independent if and only if there exists a nonzero sequence of
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vectors (v1, . . . , vq) in [0,∞)d with disjoint supports and independent standard gamma variables

(Y1, . . . , Yq , Y ′1, . . . , Y
′
q) such that X ∼ v1Y1 + · · · + vqYq and X′ ∼ v1Y

′
1 + · · · + vqY ′q .

The real domain D(m) of existence of this Laplace transform (??) is open and is the set H of

hk’s such that 1−
∑

k∈Tm
akhk > 0 for all m = 1, . . . , q. For h ∈ H, the element mh of the natural

exponential family F generated by m has the following Laplace transform:

h 7→
Lm(h+ h)

Lm(h)
= e

∑

k∈T0
akhk

q
∏

m=1



1− rm
∑

k∈Tm

akhk





−pm

,

where rm = rm(h) = (1 −
∑

k∈Tm
akhk)

−1. Note that mh is also a product of line multivariate

gamma distributions. The reader can verify that the family MP(F) = {MP(mh); h ∈ H} is indeed

a natural exponential family generated by MP(m) (warning: the parametrization h 7→ MP(mh) of

MP(F) is not the canonical one). The next theorem shows that we have obtained in this way all

natural exponential families F such that MP(F) is also an exponential family. It is an extension

of the above Theorem 1.

Theorem 2. If the image of the NEF F on [0,∞)d by l 7→ MP(l) is still a natural exponential

family, then there exists q + 1 disjoints subsets of {1, . . . , d} denoted by {T0, T1, . . . , Tq} and

there exist nonnegative numbers a1, . . . , ad and positive numbers p1, . . . , pq such that F has a

generating measure m with Laplace transform (??).

Proof. Similar to the proof of Theorem 1, the case where F is concentrated on a subspace of R
d

such as (0, . . . , 0)× R
q with q < d is discarded. This case leads to mixed Poisson distributions

concentrated on (0, . . . , 0)×N
q . Denote by m an arbitrary generating measure of F and L(h) its

Laplace transform defined as

L(h) =

∫

[0,∞)d
e〈k,h〉m(dk),

for h ∈ H, where H is the interior of the domain of convergence of L(h). Note that the fact that

m is concentrated on [0,∞)d implies that H+ a ⊂ H for any a = (a1, . . . , ad) such that ai 60.

Suppose that the image of F(m) by l 7→ MP(l) is an NEF on N
d generated by some measure

∑

n∈N
d pndn. We write 1 ∈ R

d for the vector with components equal to 1. We use the standard

notations kn = k
n1

1 · · · k
nd

d and n! = n1! · · · nd !, for n = (n1, . . . , nd) in N
d and k in [0,∞)d .

Similarly L(n)(h) means

L
n1

Lh
n1

1

. . .
L
nd

Lh
nd

d

L(h).

Thus there exist two functions a : H+ 1 → R
d and b : H+ 1 → R such that

∫

[0,∞)d
e〈k,(h−1)〉 k

n

n!
m(dk) = pne

〈n,a(h)〉+b(h),

which can be rewritten

L(n)(h− 1) = n!pne
〈n,a(h)〉+b(h) ∀n ∈ N

d . (7)

A discussion similar to that of Theorem 1 shows that pn > 0 for all n ∈ N
d , since m is not

concentrated on some subspace of type (0, . . . , 0) × R
q . As a consequence, the real-analyticity
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of a and b on H + 1 can be deduced of the analyticity of L, by imitating again the proof of

Theorem 1. Denote ei = (0, . . . , 1, . . . , 0) ∈ N
d , where the unique 1 is in position i. We also

write a(h) = (a1, . . . , ad), aij =
Laj

Lhi
and bi =

Lb

Lhi
. By taking the logarithms of both sides of

(??) and applying L

Lhi
we get

L(n+ei )(h− 1)

L(n)(h− 1)
=

〈

n,
La(h)

Lhi

〉

+
Lb(h)

Lhi

=

d
∑

k=1

nkaik + bi . (8)

This last equality implies

aijajk = ajiaik, (9)

aijbj = ajibi, (10)

for all i, j, k in {1, . . . , d}. Indeed, by using (??) and L
2

LhiLhj
= L

2

LhjLhi
, the quantity L(n+ei+ej )(h−

1) can be written in two ways:

L(n+ei+ej )(h− 1)=L(n)(h− 1)

(

d
∑

k=1

nkaik + bi + aij

)(

d
∑

k=1

nkajk + bj

)

,

=L(n)(h− 1)

(

d
∑

k=1

nkaik + bi

)(

d
∑

k=1

nkajk + bj + aji

)

.

Since this equality holds for all n, (??) and (??) are easily obtained.

Assume first that aij 6= 0 for all i and j (separating this case is not absolutely necessary but

makes the reading easier) and fix h−1 (as we did in the proof of Theorem 1). In this case, (??) and

(??) imply that there exist numbers a1, . . . , ad and p such that ai = aij for all j and p = bi/aij

for all i and j . Equality (??) can then be written

L(n+ei )(h− 1)

L(n)(h− 1)
= ai

(

p +

d
∑

k=1

nk

)

.

As a consequence, the following result can obtained:

L(h− 1+ h)

L(h− 1)
=

(

1−

d
∑

k=1

akhk

)−p

, (11)

after noting

1

(1−
∑d

k=1 akhk)p
=

∞
∑

s=0

(p)s
1

s!

(

d
∑

k=1

akhk

)s

=

∞
∑

s=0

(p)s
∑

n; n1+···+nd=s

1

n!

d
∏

k=1

(akhk)
nk .

Consider now the implications of (??) and (??) in the general case where some aij can be 0.

For this, consider a directed graph G = (V , E) whose set of vertices V = {1, . . . , d} is such that

(i, j) is an edge if and only if aij 6= 0. We also write i → j instead of aij 6= 0 or (i, j) ∈ E

and i ↔ i when the loop (i, i) exists (this loop may or may not exist). Suppose that there
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exists k such that aki = 0 for all i. Eq. (??) can then be written

L(n+ek)(h− 1)

L(n)(h− 1)
= bk.

Thus, for any integer nk , we have L(nkek)(h − 1) = L(h − 1)(bk)
nk . After multiplication by

h
nk

k /nk! and summation (with respect to nk) we obtain

L(h− 1+ h) = L(h− 1)ebkhk ,

for h = hkek . More generally, denote by T0 the set of k such that there is no i such that k → i.

The above reasoning shows that

L(h− 1+ h) = L(h− 1)e
∑

k∈T0
bkhk , h =

∑

k∈T0

hkek.

Some definitions about graphs need to be recalled. Consider a directed graph G = (V , E), where

V is a finite set and E ⊂ V × V . The graph G1 = (V1, E1) is called a subgraph of G if V1 ⊂ V

and E1 ⊂ E ∩ (V1 × V1). Furthermore, G1 is the induced graph on V1 if E1 = E ∩ (V1 × V1).

The following result can be easily obtained:

Lemma. Consider the graph G defined as above on V={1, . . . , d} by the matrix (aij ) satisfy-

ing (??). Then

1. Let i and j be distinct in V. If the induced subgraph G1 on V1 = {i, j} contains either the

subgraph i → j ↔ j or the subgraph i ↔ j , then the induced graph is i ↔ i ↔ j ↔ j .

2. If the induced subgraph G1 on V1 = {i, j, k} contains the subgraph i → j → k then G1

contains the subgraph k ← i ↔ i ↔ j ↔ j → k.

3. If the induced subgraph G1 on V1 = {i, j} is either the subgraph i ↔ i → j or the subgraph

i → j , then bj = 0.

These results are illustrated in Fig. ??. The proof of the lemma involves the three following

cases:

1. If i → j ↔ j , by setting k = j and k = i in (??), we obtain aji 6= 0 and aii 6= 0. If i ↔ j ,

by setting k = j and k = i in (??), we obtain ajj 6= 0 and aii 6= 0.

2. (??) imply aji = ajk = ajj = aj and aij = aii = aik = ai . If aij 6= 0, we obtain aii 6= 0 and

aik 6= 0. Similarly, if ajk 6= 0, we obtain ajj 6= 0 and aji 6= 0.

3. Apply (??).

We come back to the proof of Theorem 2. Define the relation i ∼ j on V = {1, . . . , d} by

either i = j or the induced graph on {i, j} is i ↔ i ↔ j ↔ j . It is easy to deduce from the

Lemma that ∼ is an equivalence relation. We remark that this implies that each element of T0 is

alone in its equivalence class. Recall also that the definition of T0 implies that there are no arrows

between two elements of T0. Denote the other equivalence classes by T1, . . . , Tq .

Suppose now that there exists i ∈
⋃q

m=1 Tm and k ∈ T0 such that i → k. Then part 3 of the

Lemma implies that bk = 0. Eq. (??) can be used to prove that L(n+ek) = 0 for all n ∈ N
d . Thus,

h 7→ L(h − 1 + h) does not depend on hk . Since bk = 0, this implies that l is concentrated

on {k ∈ R
d; kk = 0}, a case which has been excluded from the beginning. There are finally no

arrows between
⋃q

m=1 Tm and T0.

9



Fig. 1. Illustration of the lemma.

As a summary, the picture of the graph G is

1. a collection T0 of vertices without any arrow and any loop.

2. q disjoint classes T1, . . . , Tq without arrows between vertices of different classes, and with all

possible arrows (including loops) inside a same class Tm.

Consider a fixed m in {1, . . . , q}. For all i, j in Tm, by setting k = i in (??), we obtain

aijaji = ajiaii . Thus, aji 6= 0 implies aij = aii . By using (??), for i ∈ Tm and for any n ∈ N
d ,

the following result can be obtained:

L(n+ei )(h− 1)

L(n)(h− 1)
= aii





bi

aii

+
∑

k∈Tm

nk



 . (12)

Recall that the number pm = bi/aii does not depend on i when i runs Tm (indeed aij = aii and

use (??)). Denote ak = akk as above. The imitation of the proof of (??) and the formula (??) lead

to:

L(h− 1+ h)

L(h− 1)
=



1−
∑

k∈Tm

akhk





−pm,

(13)

for any h =
∑

k∈Tm
hkek . This concludes the proof of theorem. �
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