656 research outputs found

    Génétique des populations de Beryx splendens de la zone économique de la Nouvelle-Calédonie : distribution des haplotypes du gène du cytochrome b de l'ADN mitochondrial et analyse phylogénétique de leurs séquences

    Get PDF
    La délimitation géographique des populations, établie sur les bases biologiques, est nécessaire à toute gestion rationnelle des pêcheries. Tel est le cas pour #Beryx splendens, ressource pour laquelle la mise en évidence de différentes populations dans la zone économique (ZE) de Nouvelle-Calédonie serait essentielle pour en éviter la surexploitation. L'ADN mitochondrial a été choisi comme marqueur génétique de la structure géographique de #B. splendens sur les monts sous-marins de la ZE de Nouvelle-Calédonie. (D'après résumé d'auteur

    Reduced up-regulation of gene expression in response to elevated temperatures in the mid-Atlantic population of Calanus finmarchicus

    Get PDF
    Abstract Climate change is affecting numerous species worldwide, including dominant and important copepods of the genus Calanus. Despite the growing body of studies that examine effects of climate change stressors on Calanus species, comparative intraspecific studies are lacking. Importantly, acclimatization and genetic adaptation can modify the stress response, thus leading to a differential response of separated populations to the same stressor. The molecular and physiological responses of a C. finmarchicus population from the mid-Atlantic, with an in situ temperature of 8.5 °C, were investigated under experimental thermal conditions of 0 °C, 5 °C, 10 °C, 15 °C, and 20 °C for durations of 3 h and 6 days. This experimental set-up mirrored previously published experiments conducted on C. finmarchicus at the northern limit of its distribution allowing a comparison between two populations. The greatest physiological response, assessed as fecal pellet production, was seen after 3 h exposure at 10 °C and 15 °C, and after 6 days exposure at 5 °C, 10 °C and 15 °C. Molecular response was assessed by the change in expression of 5 selected genes: hsp70_2, dnaja1, nap 1l1, rps11, and gdh. Only two out of the five genes (gdh and nap1l1) showed significant up-regulation with increased temperature and duration of exposure. These findings differ from the results obtained in the northern population where all 5 genes were differently expressed. Overall, the results suggest population-specific response to temperature in C. finmarchicus, however determining the source of such variation (genetic adaptation or acclimatization) requires more detailed studies

    An efficient implicit direct forcing immersed boundary method for incompressible flows

    No full text
    International audienceA novel efficient implicit direct forcing immersed boundary method for incompressible flows with complex boundaries is presented. In the previous work [1], the calculation is performed on the Cartesian grid regardless of the immersed object, with a fictitious force evaluated on the Lagrangian points to mimic the presence of the physical boundaries. However the explicit direct forcing method [1] fails to accurately impose the non-slip boundary condition on the immersed interface. In the present work, the calculation is based on the implicit treatment of the artificial force while in an effective way of system iteration. The accuracy is also improved by solving the Navier-Stokes equation with the rotational incremental pressure- correction projection method of Guermond and Shen [2]. Numerical simulations performed with the proposed method are in good agreement with those in the literature

    Robust Adaptive Detection of Buried Pipes using GPR

    Get PDF
    International audienceDetection of buried objects such as pipes using a Ground Penetrating Radar (GPR) is intricate for three main reasons. First, noise is important in the resulting image because of the presence of several rocks and/or layers in the ground, highly influencing the Probability of False Alarm (PFA) level. Also, wave speed and object responses are unknown in the ground and depend on the relative permit-tivity, which is not directly measurable. Finally, the depth of the pipes leads to strong attenuation of the echoed signal, leading to poor SNR scenarios. In this paper, we propose a detection method: (1) enhancing the signal of interest while reducing the noise and layer contributions, and (2) giving a local estimate of the relative permittivity. We derive an adaptive detector where the signal of interest is parametrised by the wave speed in the ground. For this detector, noise is assumed to follow a Spherically Invariant Random Vector (SIRV) distribution in order to obtain a robust detection. We use robust maximum likelihood-type covariance matrix estimators called M-estimators. To handle the significant amount of data, we consider regularised versions of said estimators. Simulation will allow to estimate the relation PFA-Threshold. Comparison is performed with standard GPR processing methods, showing the aptitude of the method in detecting pipes having low response levels with a reasonable PFA

    Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic

    Get PDF
    We examined 733 individuals of Fucusspiralis from 21 locations and 1093 Fucusvesiculosus individuals from 37 locations throughout their northern hemisphere ranges using nuclear and mitochondrial markers. Three genetic entities of F. spiralis were recovered. In northern and sympatric populations, the presence of "F. spiralis Low" in the mid-intertidal and "F. spiralis High" in the high-intertidal was confirmed and both co-occurred with the sister species F. vesiculosus. The third and newly-discovered entity, "F. spiralis South", was present mainly in the southern range, where it did not co-occur with F. vesiculosus. The South entity diverged early in allopatry, then hybridized with F. vesiculosus in sympatry to produce F. spiralis Low. Ongoing parallel evolution of F. spiralis Low and F. spiralis High is most likely due to habitat preference/local selection and maintained by preferentially selfing reproductive strategies. Contemporary populations of F. spiralis throughout the North Atlantic stem from a glacial refugium around Brittany involving F. spiralis High; F. spiralis South was probably unaffected by glacial episodes. Exponential population expansion for F. vesiculosus began during the Cromer and/Holstein interglacial period (300,000-200,000 yrs BP). Following the last glacial maximum (30,000-22,000 yrs BP), a single mtDNA haplotype from a glacial refugium in SW Ireland colonized Scandinavia, the Central Atlantic islands, and the W Atlantic

    Improving transferability of introduced species' distribution models: new tools to forecast the spread of a highly invasive seaweed

    Get PDF
    Extent: 13 p.The utility of species distribution models for applications in invasion and global change biology is critically dependent on their transferability between regions or points in time, respectively. We introduce two methods that aim to improve the transferability of presence-only models: density-based occurrence thinning and performance-based predictor selection. We evaluate the effect of these methods along with the impact of the choice of model complexity and geographic background on the transferability of a species distribution model between geographic regions. Our multifactorial experiment focuses on the notorious invasive seaweed Caulerpa cylindracea (previously Caulerpa racemosa var. cylindracea) and uses Maxent, a commonly used presence-only modeling technique. We show that model transferability is markedly improved by appropriate predictor selection, with occurrence thinning, model complexity and background choice having relatively minor effects. The data shows that, if available, occurrence records from the native and invaded regions should be combined as this leads to models with high predictive power while reducing the sensitivity to choices made in the modeling process. The inferred distribution model of Caulerpa cylindracea shows the potential for this species to further spread along the coasts of Western Europe, western Africa and the south coast of Australia.Heroen Verbruggen, Lennert Tyberghein, Gareth S. Belton, Frederic Mineur, Alexander Jueterbock, Galice Hoarau, C. Frederico D. Gurgel, Olivier De Clerc

    Thermal priming of Saccharina latissima, a promising strategy to improve seaweed production and restoration in future climates

    Get PDF
    Saccharina latissima is a brown algal kelp species of ecological and economic importance. As the rise in sea surface temperature will threaten not only wild populations of S. latissima but also the productivity of kelp farms, crop enhancement techniques will become crucial to mitigate this threat. Priming is a common strategy in crop plants, in which seeds are pre-exposed to a moderate stress to improve the performance and tolerance of plants when exposed to harsher conditions. We investigated the potential of thermal priming to improve growth and tolerance of S. latissima. Kelp gametophytes primed at 20°C for 2, 4 and 6 weeks and then re-transferred to 5°C were compared to a naïve treatment maintained at 5°C. Gametophytes priming increased growth of subsequently formed sporophytes by up to 30% (for 4 weeks priming) compared to the naïve treatment. Female gametophyte growth in the priming environment was positively correlated to offspring sporophyte growth, indicating a maternal effect. Sporophytes were exposed to a heat stress of 20, 22, 23 and 24°C for two weeks. Sporophytes from 4- and 6-weeks primed gametophytes exhibited 11 days longer tolerance at 22°C, 7 days longer tolerance at 23°C and 1°C higher thermal tolerance over 7 days compared to naïve sporophytes and sporophytes from 2 weeks priming. A priming time of 4 weeks was optimal for both sporophyte growth and thermal tolerance. Our results suggest that priming is a promising crop enhancement technique that could improve yield for seaweed farmers and restoration of kelp forests threatened by warming climates

    Multi-wave coherent control of a solid-state single emitter

    Get PDF
    The authors acknowledge support by the European Research Council Starting Grant 'PICSEN' contract no. 306387.Coherent control of individual two-level systems (TLSs) is at the basis of any implementation of quantum information. An impressive level of control is now achieved using nuclear, vacancies and charge spins. Manipulation of bright exciton transitions in semiconductor quantum dots (QDs) is less advanced, principally due to the sub-nanosecond dephasing. Conversely, owing to their robust coupling to light, one can apply tools of nonlinear spectroscopy to achieve all-optical command. Here, we report on the coherent manipulation of an exciton via multi-wave mixing. Specifically, we employ three resonant pulses driving a single InAs QD. The first two induce a four-wave mixing (FWM) transient, which is projected onto a six-wave mixing (SWM) depending on the delay and area of the third pulse, in agreement with analytical predictions. Such a switch enables to demonstrate the generation of SWM on a single emitter and to engineer the spectro-temporal shape of the coherent response originating from a TLS. These results pave the way toward multi-pulse manipulations of solid state qubits via implementing the NMR-like control schemes in the optical domain.PostprintPeer reviewe

    Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response

    Get PDF
    Chikungunya virus (CHIKV) is a reemerging mosquito-borne pathogen that causes incapacitating disease in humans characterized by intense joint pain that can persist for weeks, months, or even years. Although there is some evidence of persistent CHIKV infection in humans suffering from chronic rheumatologic disease symptoms, little is known about chronic disease pathogenesis, and no specific therapies exist for acute or chronic CHIKV disease. To investigate mechanisms of chronic CHIKV-induced disease, we utilized a mouse model and defined the duration of CHIKV infection in tissues and the associated histopathological changes. Although CHIKV RNA was readily detectable in a variety of tissues very early after infection, CHIKV RNA persisted specifically in joint-associated tissues for at least 16 weeks. Inoculation of Rag1(−/−) mice, which lack T and B cells, resulted in higher viral levels in a variety of tissues, suggesting that adaptive immunity controls the tissue specificity and persistence of CHIKV infection. The presence of CHIKV RNA in tissues of wild-type and Rag1(−/−) mice was associated with histopathological evidence of synovitis, arthritis, and tendonitis; thus, CHIKV-induced persistent arthritis is not mediated primarily by adaptive immune responses. Finally, we show that prophylactic administration of CHIKV-specific monoclonal antibodies prevented the establishment of CHIKV persistence, whereas therapeutic administration had tissue-specific efficacy. These findings suggest that chronic musculoskeletal tissue pathology is caused by persistent CHIKV infection and controlled by adaptive immune responses. Our results have significant implications for the development of strategies to mitigate the disease burden associated with CHIKV infection in humans
    corecore