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The transition to turbulence in the incompressible flow around a NACA0012 wing
at high incidence is studied by DNS in the Reynolds number range 800–10 000. Two
main routes are identified for the two-dimensional transition mechanisms: that to
aperiodicity beyond the von Kármán mode via a period-doubling scenario and the
development of a shear-layer instability, forced by the fundamental oscillation of
the separation point downstream of the leading edge. The evolution of the global
parameters as well as the variation law of the shear-layer instability wavelength
are quantified. The history of the three-dimensional transition mechanisms from a
nominally two-dimensional flow structure is identified beyond the first bifurcation, as
well as the preferred spanwise wavelengths.

1. Introduction
The transition to turbulence in the flow around airfoils has, until recently, received

less attention than similar configurations involving bluff-body wakes. Research on
unsteady flows around airfoils has focused on the high-Reynolds number range and
especially on pitching motion analysis related to the dynamic stall. This interest is
justified by the importance of the pitching motion of lifting bodies in the avionics
industry and especially rotorcrafts. However, there is a major interest, both from a
fundamental and industrial point of view, on the inherent unsteady flow around
airfoils and wings: the spontaneous appearance of unsteadiness with steady external
conditions. There is particular interest in examining the natural transition to turbu-
lence governing this kind of flow, because of the development of important organized
modes that persist at the high Reynolds number range and interact nonlinearly
with any imposed (forced) frequency oscillation. From a practical point of view, the
transition mechanisms lead to a substantial growth of the mean values and amplitudes
of the global parameters, an issue that is important in both aerodynamics and in
fluid–structure interaction.

There are few analyses in the literature on the two-dimensional unsteady separation
at moderate Reynolds numbers. Mehta & Lavan (1975) in a pioneering work simu-
lated the starting separation vortex in a flow at low Reynolds numbers. A compre-
hensive review of separation as well as of dynamic stall can be found in McCroskey
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(1982). The birth of natural transition in incompressible or subsonic flow regimes was
studied by Pulliam & Vastano (1993) up to Reynolds number 3000, and by Ventikos,
Tzabiras & Braza (1993), and in the transonic regime by Bouhadji & Braza (2002)
up to Reynolds number 10 000.

Regarding the birth of the organized modes, there is little available knowledge of the
three-dimensional mechanisms or the evolution of these modes over a wide, moderate
Reynolds number range in the incompressible flow regime. The present paper focuses
on the early stages of the natural transition, associated with the development of
organized modes as the Reynolds number increases. The geometry chosen is the
NACA0012 wing at a high angle of incidence (20◦), ensuring a massively detached
flow in a wide Reynolds number range. This study is based on time-dependent
Navier–Stokes simulation, in two and three dimensions. The following points will be
discussed:

(i) identifying the successive changes that the flow undergoes as the Reynolds
number increases, as well as the related instability modes;

(ii) analysing in detail the shear-layer transition under the nonlinear interaction
with the von Kármán mode in the higher Reynolds number range;

(iii) analysing the development of the three-dimensional transition from a nomi-
nally two-dimensional flow configuration subject to the von Kármán mode, which is
strongly asymmetric due to the lifting body configuration.

2. Governing equations and numerical method
The governing equations are the continuity and the Navier–Stokes equations for

an incompressible fluid. The numerical method is based on the pressure–velocity
formulation employing a predictor–corrector pressure scheme and staggered grids for
velocity and pressure. Two algorithms with similar features, both based on this
methodology, have been used for the two-dimensional study, both leading to practi-
cally the same results. The first one is an implicit form of an originally explicit
scheme by Amsden & Harlow (1970), extended in the present case to unsteady flows.
The details can be found in Braza, Chassaing & Ha-Minh (1986). The other is a
SIMPLE-type implicit algorithm, described in Tzabiras, Dimas & Loukakis (1986).
The space derivatives are discretized by using central differences. The methodology
in both cases is second-order accurate in space and time. The equations are written
in orthogonal curvilinear systems.

For the three-dimensional cases, a three-step fractional time scheme (based on
Douglas 1962 for the diffusion equations) has been extended to the convection–
diffusion unsteady Navier–Stokes solution, as described by Persillon & Braza (1998).
This scheme employs an alternating direction implicit method, leading to the solution
of tridiagonal systems by a very fast algorithm. This is vital for realistic three-
dimensional computations. The equations are written in general curvilinear co-
ordinates. The numerical algorithm is fully parallelized for distributed memory
architectures (Hoarau et al. 2001).

The boundary conditions are free stream at the inlet boundary and non-reflective
absorption conditions for the outlet boundary, as specified by Jin & Braza (1993) to
minimize very efficiently any feedback effect in the incompressible flow regime. The
impermeability and adherence conditions are specified for the solid wall. C type grids
are employed. Typical grids used for the two-dimensional simulations are 250 × 160,
450 × 200 to 1000 × 400 and the time step is �t = 0.001. The grid used for the three-
dimensional simulation is (413 × 70 × 90). The spanwise length of the computational
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domain is 4c and 12c, both providing the same kind of three-dimensional phenomena;
c represents the chord length and Re = U∞c/ν is the Reynolds number.

A very detailed and careful study of the choice of numerical parameters and
dimensions of the computational domain, in respect of the grid and the spanwise
distance independence of the results has been conducted, and for the two-dimensional
study (Hoarau 2002; Ventikos 1995). The runs are carried out on the supercomputers
SP3, SP4 and Origin 3000 of the national supercomputer centres CINES, IDRIS and
CALMIP.

3. The first stages of the two-dimensional transition
First, computations are carried out in the very low Reynolds number regime

(around Re =5) showing a fully attached steady flow. As the Reynolds number
increases, a small attached vortex is created near the trailing edge and grows with
the Reynolds number. Near Reynolds number 70, where the bubble has attained a
length nearly 40% the chord, unsteady separation starts and a very regular vortex
shedding appears. The vortex shedding pattern is attained at Re =450. At Re = 800,
the vortex shedding motion is very regular. This regime is analysed in detail in the
present study with respect to the two- and three-dimensional transition mechanisms.
Beyond Reynolds number 800, the vortex shedding regularity is attenuated and other
dominant frequencies appear, which are fractions of the fundamental, up to Re = 2000.
As the Reynolds number increases further, the transition process becomes more
complex, because of the development of a shear-layer instability as an incommensurate
mode, analysed in § 3.2.

Two different mechanisms can be identified as the Reynolds number increases.

3.1. The period-doubling mechanism

The first mechanism corresponds to the evolution of the von Kármán instability and
is closely related to a period-doubling, scenario, as is clearly shown in the spectra
of the numerically obtained signals for increasing Reynolds number in the range
(800–1600) (figure 1). The appearance of the first subharmonic of the main vortex
shedding frequency can be physically justified by the fact that at a higher Reynolds
number, the shed vortex close to the trailing edge is weakened at exactly 2T (T
being the vortex shedding period) by the opposite vortex which starts being shed.
This illustrates the phenomenon of period doubling, which is characterized by an
energy–vorticity exchange process. This mechanism becomes dominant whenever the
externally supplied energy (Reynolds number) to the system becomes higher than a
critical value, in the context of the non-antisymmetric vortex shedding mode, owing
to the lifting-body configuration. Recall that this kind of mechanism does not appear
in the case of symmetric von Kármán vortex shedding, as for example in flows past
bluff bodies.

The period-doubling mechanism appears repeatedly as the Reynolds number
increases further, and it yields spectra with four, eight, . . . peaks. The details of the
period-doubling mechanism in the sense of Feigenbaum chaos (Feigenbaum 1978)
have been studied by Pulliam & Vastano (1993) and Ventikos et al. (1993), among
others. Our results compare very favourably with the ones obtained by Pulliam &
Vastano, where such comparisons are possible. The time and space resolution em-
ployed in the present study is higher than in those two studies and this allows an
accurate evaluation of the energy spectra and of the corresponding attractors corres-
ponding to these successive changes. The attractor associated with each Reynolds
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Figure 1. (a) Pressure coefficient spectra showing the period-doubling mechanism, and the
corresponding attractors at (b) Re= 800 and (c) 1300.

number system is determined by the time-delay reconstruction technique (Takens
1980) and is shown in figure 1(b, c). The three-dimensional projection of the four-
dimensional attractor is shown using this method. The first step (Re = 800) corres-
ponds to a Poincaré limit cycle due to the appearance of the fundamental as the only
dominant frequency. The second step is characterized by the fundamental frequency
and its subharmonic (Re = 1300). The period-doubling continues, as the Reynolds
number increases, as shown in the spectra of figure 1(a).

3.2. The shear-layer instability

The second mechanism appears beyond Re =2000. The separated shear layer under-
goes another important transition mechanism that gives rise to an incommensurate
frequency, due to the development of a Kelvin–Helmholtz instability. In the present
case, this instability mode is forced by the oscillatory motion of the separation point,
which obeys the von Kármán instability. Therefore, the expected dynamics are those
of a forced (perturbed) shear layer, according to Ho & Huerre (1984), Freymuth
(1966) and Huerre & Monkewitz (1985).

Figure 2 show the progressive undulation of the separated shear layer past the
airfoil as well as the clear formation of Kelvin–Helmholtz vortices as the Reynolds
number increases from 2000 to 10 000. The shear-layer vortices are shorter than the
von Kármán ones and decrease as the Reynolds number increases. A detailed space–
time tracking of these vortices allows the evaluation of the shear-layer instability
wavelength in the present case. It is found that the wavelength decreases as the
Reynolds number increases, according to the law λsl ∝ Re−0.44 (figure 3a). Furthermore
the ratio fsl/fV −K is plotted versus Re (figure 3b). The variation law obtained is
∝ Re0.43. This exponent law is very close to the Re0.5 that characterizes the development
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Figure 2. Instantaneous iso-pressure contours: spatial view of the shear-layer instability as
Reynolds number increases: (a) 2000, (b) 3000, (c) 4000, (d) 5000, (e) 7000, (f ) 10 000.
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Figure 3. Evolution of (a) the shear-layer wavelength and (b) the Strouhal number and the
ratio Fsl/St , versus the Reynolds number.

of the instability wave prior to separation, as reported by Bloor (1964) for bluff-body
wakes.

The shear-layer frequency is an incommensurate mode in comparison to the von
Kármán mode. This leads, in association with the period-doubling scenario, to the
nonlinear filling of the energy spectrum by a multitude of modes that are combinations
of the von Kármán and shear-layer modes, as reported by Braza, Chassaing & Ha-
Minh (1990) for bluff-body wakes. The nonlinear interaction of the shear-layer vortices
with the von Kármán ones can be followed in figure 2, where the ‘tail’ of the shear-layer
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Figure 4. Evolution of the global parameters and of the spanwise velocity structure: (a) mean
drag and lift coefficients versus Re (W95 denotes Williamson et al. 1995) and (b) time–space
evolution of the W velocity component along the span, x/c = 0.7, y/c = 0.169, at Re= 800.

vortices region amalgamates with the adjacent von Kármán ones in the formation
region.

3.3. The evolution of the global parameters as the Reynolds number increases

The global parameters vary with the Reynolds number as a consequence of the
above changes, as shown in figures 3(b) and 4(a). The mean lift coefficient (figure 4a)
undergoes a smooth decrease as the Reynolds number increases, because the flow is
already stalled at 20◦, for all the Reynolds numbers examined. Therefore, this decrease
corresponds to an equivalent behaviour occurring at fixed Re and increased incidence
beyond stall. Similarly, the drag coefficient shows a plateau saturation level, attained
in the intermediate Reynolds number range, and then decreases as a function of the
Reynolds number. The more abrupt decrease of the drag coefficient beyond Reynolds
number 5000 is a consequence of the multitude of shear-layer vortices and of the
formation of a quasi-stagnation region below the separated shear layer, up to the
wall. A comparison of the global parameters is given with the three-dimensional DNS
results discussed in the next paragraph. There is a reduction of the three-dimensional
drag coefficient, comparing to the two-dimensional one. The same behaviour had been
reported by Persillon & Braza (1998) for the cylinder wake. However, the difference
between the two- and three-dimensional computations does not exceed about 10%
in the present study. This ensures the validity of the two-dimensional approximation
in the low Re-range with respect to the near-field coherent large-scale structures, that
directly influence the drag coefficient.

The Strouhal number evaluated from the lift coefficient follows the shedding motion
of the lower trailing-edge vortex, which is delayed by the creation of the above-
mentioned fully developed region beyond Re = 5000. Therefore, this step is qualita-
tively similar to the ‘drag crisis’ appearing in bluff-body wakes at higher Reynolds
number, although the wake formation region of a circular cylinder varies significantly
in this range. In the crtical regime, a multitude of small-scale vortices are created
upstream of the separation, because of the boundary-layer transition occurring there.
The Strouhal number versus the Reynolds number (figure 3b) also shows a decrease
for the same reason. These effects are obtained in the present study by the fully
nonlinear approach of the Navier–Stokes system. A comparison of global parameters
obtained from the present simulation with a water-channel experiment by Williamson,
Govardhan & Prasad (1995) gives very good agreement at Reynolds number 10 000.
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Figure 5. Spatial evolution of the longitudinal and vertical vorticity components, Re= 800.

Furthermore, the three-dimensional computations in the low Re-range found that the
Strouhal number is essentially the same as in the two-dimensional case. These facts
ensure the validity of the extension of the numerical study from the low to the higher
Reynolds number range.

4. The onset of the three-dimensional transition
In this section the development of the three-dimensional transition to turbulence

from a nominally two-dimensional flow configuration is examined. The Reynolds
number 800 has been selected first, because it corresponds to a very strong and
regular development of the von Kármán mode. The initial conditions are either those
of a flow at rest triggered by a very weak spanwise W velocity fluctuation imposed as
a random fluctuation, or a fully developed two-dimensional vortex shedding pattern
perturbed in the same way. The dimensionless r.m.s. values of the spanwise fluctuation
are of order 10−4 U∞. This technique does not predetermine the appearance of any Q1

wavelength and the order of magnitude of the fluctuation is very weak and less
than the upstream noise existing in any wind tunnel. By performing a very detailed
three-dimensional study, it has been found that the flow ‘forgets’ its initial conditions
and both ways of initiating the three-dimensional transition lead to the same final
regime: the first step is the development of the two-dimensional von Kármán pattern
followed by the appearance of the three-dimensional mechanisms as described below.

4.1. The history of the three-dimensional transition mechanisms

Figure 4(b) shows the time–space evolution of the W velocity component along the
span. After a transient phase, the onset of the three-dimensional transition appears as
an organized pattern of the iso-W velocity contours as coherent counter-rotating cells.
This step is followed by the amplification of the longitudinal and vertical vorticity
components, ωx and ωy , that are found to form the same kind of coherent cells,
figure 4(b). This spanwise-periodic fluctuation plays the role of a factor perturbing
the von Kármán rectilinear vortex rows. Consequently, the ωz vorticity is expected to
be modified according to the vorticity conservation equations (Sadeh & Brauer 1980).
From elliptic stability theory (Landman & Saffman 1987), the expected spanwise
mode of an originally two-dimensional elliptic-shaped vortex (in the present case the
von Kármán vortex rows) is a three-dimensional undulated large-scale vortex row
with a regular spanwise wavelength. This is shown in figures 5 and 6(a). The dynamics
of this pattern are similar to those of bluff-body-wake DNS studies (Persillon & Braza
1998), but in the present case the shearing mechanism is totally asymmetric. The shape
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Figure 6. Spatial evolution of (a) the spanwise vorticity component at Re= 800
and (b) the pressure coefficient at Re= 1200.
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Figure 7. (a) Comparison of the two- and three-dimensional spanwise-averaged plan at
Re= 800, (b) normalized spanwise wavelength – comparison of cylinder wake (taken from
Persillon & Braza 1998) and present study.

of the undulated vortices is much more stretched, with the lifting body configuration.
By performing a space-averaging of all the three-dimensional transverse sections at
the same instant, it has been proven that the alternating vortex pattern is very similar
to the corresponding two-dimensional configuration at the same phase, figure 7(a).
Therefore, the present three-dimensional route to transition is expected to be affected
by the same kind of period-doubling cascade and the shear-layer instability, as
discussed in the two-dimensional study. However, the present three-dimensional study
is still carried out in a low Reynolds number range where these effects are not yet
fully pronounced.

A fast Fourier transform analysis of the spanwise evolution of the secondary
instability mode has been used to evaluate the preferential spanwise wavelength
developed under the present conditions, λz/D = 0.64. This value is in good agreement
with the results for bluff-body wakes: although the fundamentals of the shearing
mechanism are different in the present case of lifting-body wakes, an analogy with
bluff-body ones can be made by considering an ‘equivalent’ bluff-body configuration
having a characteristic vertical length c sin(a) in the upstream velocity direction, c

being the chord and a the incidence. Therefore, the ‘effective’ Reynolds number in the
wing-body analogue of the bluff body is Re c sin(20◦) = 273. The expected wavelength
for this ‘equivalent’ bluff-body wake would be of order 0.60–0.70 according to the
DNS by Persillon & Braza (1998) and Braza, Persillon & Faghani (2001). The same
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kind of three-dimensional dynamics govern the flow at Re =1200, figure 6(b), and
the corresponding wavelength λz/D = 0.62, at an effective Re = 410.5. A qualitative
comparison with the cylinder wake is shown in figure 7(b). These results are in
good qualitative agreement with the three-dimensional wavelength of the bluff-body
transition.

The secondary instability development is expected to continue as Re increases by
providing progressively smaller wavelengths, together with the development of the
previously mentioned cascades. Because of the robustness of the two-dimensional
alternating pattern even at higher Re, it is expected that both routes to transition
would persist and be clearly identified as Re increases further, by involving in addition
nonlinear effects. This study is currently underway within our research group.

5. Conclusion
The present study analyses the successive transition steps in the flow around a high-

lift wing configuration, as the Reynolds number increases in the low and moderate
range (800–10 000), using the Navier–Stokes approach. A very good agreement is
found with a water-channel experiment.

A two-dimensional study has shown that the present flow system is mainly governed
by two kinds of organized modes appearing successively as the Reynolds number
increases: the von Kármán and the shear layer modes. A period-doubling scenario
characterizes the first two-dimensional stages of the von Kármán mode. The shear-
layer mode in the flow around an airfoil is characterized. The variation of its dominant
streamwise wavelength and of the shear-layer frequency with the Reynolds number
is determined.

The successive stages of the three-dimensional transition around a lifting body
beyond the first bifurcation are analysed in detail in the low Reynolds number
range (800–1200). The history of the three-dimensional mode development and the
robustness of the alternating vortex pattern are clearly shown and the spanwise
dominant wavelengths are quantified. Next, it would be worthwhile to analyse the
period-doubling cascade under the effect of the three-dimensional von Kármán mode
at higher Reynolds numbers, as well as the three-dimensional shear-layer transition;
this is currently being done in our research group.

The authors are grateful to the French government computer centres CINES,
IDRIS and CALMIP for the C.P.U. time attribution. This work was partly supported
by the European Commission Research programme UNSI, (Unsteady viscous flows
in the context of fluid-structure Interaction), N BRPR-CT97-0583, co-ordinated by
EADS.
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