89 research outputs found

    Insulin-like growth factor-1 is a negative modulator of glucagon secretion

    Get PDF
    Glucagon secretion involves a combination of paracrine, autocrine, hormonal, and autonomic neural mechanisms. Type 2 diabetes often presents impaired glucagon suppression by insulin and glucose. Insulin-like growth factor-I (IGF-1) has elevated homology with insulin, and regulates pancreatic ÎČ-cells insulin secretion. Insulin and IGF-1 receptors share considerable structure homology and function. We hypothesized the existence of a mechanism linking the inhibition of α-cells glucagon secretion to IGF-1. Herein, we evaluated the association between plasma IGF-1 and glucagon levels in 116 nondiabetic adults. After adjusting for age gender and BMI, fasting glucagon levels were positively correlated with 2-h post-load glycaemia, HOMA index and fasting insulin, and were negatively correlated with IGF-1 levels. In a multivariable regression, the variables independently associated to fasting glucagon were circulating IGF-1 levels, HOMA index and BMI, explaining 20.7% variation. To unravel the molecular mechanisms beneath IGF-1 and glucagon association, we investigated whether IGF-1 directly modulates glucagon expression and secretion in an in vitro model of α-cells. Our data showed that IGF-1 inhibits the ability of low glucose concentration to stimulate glucagon expression and secretion via activation of the phosphatidylinositol-3-kinase/Akt/FoxO1 pathway. Collectively, our results suggest a new regulatory role of IGF-1 on α-cells biological function

    Cancer pain management in an oncological ward in a comprehensive cancer center with an established palliative care unit.

    Get PDF
    Abstract BACKGROUND: This survey was performed to draw information on pain prevalence, intensity, and management from a sample of patients who were admitted to an oncologic center where a palliative care unit (PCU) has been established for 13 years. METHODS: Cross-sectional survey in an oncological department performed 1 day per month for six consecutive months. RESULTS: Of the 385 patients, 69.1, 19.2, 8.6, and 3.1 % had no pain, mild, moderate, and severe pain, respectively. Inpatients and patients with a low Karnofsky score showed higher levels of pain intensity (p < 0.0005). One hundred twenty-eight patients with pain or receiving analgesics were analyzed for pain management index (PMI). Only a minority of patients had negative PMI score, which was statistically associated with inpatient admission (p = 0.011). Fifty of these 128 patients had breakthrough pain (BTP), and all of them were receiving some medication for BTP. CONCLUSION: It is likely that the presence of PCU team providing consultation, advices, and cultural pressure, other than offering admissions for difficult cases had a positive impact on the use of analgesics, as compared with previous similar surveys performed in oncological setting, where a PCU was unavailable. This information confirms the need of the presence of a PCU in a high volume oncological department

    Every fifth published metagenome is not available to science

    Get PDF
    Have you ever sought to use metagenomic DNA sequences reported in scientific publications? Were you successful? Here, we reveal that metagenomes from no fewer than 20% of the papers found in our literature search, published between 2016 and 2019, were not deposited in a repository or were simply inaccessible. The proportion of inaccessible data within the literature has been increasing year-on-year. Noncompliance with Open Data is best predicted by the scientific discipline of the journal. The number of citations, journal type (e.g., Open Access or subscription journals), and publisher are not good predictors of data accessibility. However, many publications in high–impact factor journals do display a higher likelihood of accessible metagenomic data sets. Twenty-first century science demands compliance with the ethical standard of data sharing of metagenomes and DNA sequence data more broadly. Data accessibility must become one of the routine and mandatory components of manuscript submissions—a requirement that should be applicable across the increasing number of disciplines using metagenomics. Compliance must be ensured and reinforced by funders, publishers, editors, reviewers, and, ultimately, the authors.info:eu-repo/semantics/publishedVersio

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ÎČ-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (&lt;0.1% to 38.3%), being positively correlated (p &lt; 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ÎČ-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 10 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status. [Abstract copyright: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ?-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (< 0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status
    • 

    corecore