
The distributed p-median problem in
computer networks

Conference or Workshop Item

Accepted Version

AlDabbagh, A., Di Fatta, G. and Liotta, A. (2019) The
distributed p-median problem in computer networks. In: ICCSA
2019 Conference, 1-4 Jul 2019, Saint Petersburg, Russia, pp.
541-556. doi: https://doi.org/10.1007/978-3-030-24311-1_39
Available at http://centaur.reading.ac.uk/86457/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.1007/978-3-030-24311-1_39

To link to this article DOI: http://dx.doi.org/10.1007/978-3-030-24311-1_39

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/228131148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

The Third International Workshop on Parallel and Distributed Data Mining of the 19th International Conference on
Computational Science and Its Applications (ICCSA 2019), Saint Petersburg, Russia, July 1-4 2019. [in press]

The Distributed p-Median Problem in Computer Networks

Anas AlDabbagh

Department of Computer Science, University of Mosul, Iraq

Giuseppe Di Fatta

Department of Computer Science, University of Reading, UK

Antonio Liotta

Department of Electronics, Computing and Mathematics, University of Derby, UK

Abstract

Many distributed services in computer networks rely on a set of active facilities that are selected among
a potentially large number of candidates. The active facilities then contribute and cooperate to deliver a
specific service to the users of the distributed system. In this scenario graph partitioning or clustering is
often adopted to determine the most efficient locations of the facilities. The identification of the optimal
set of facility locations is known as the p-median problem in networks, is NP-hard and is typically solved
by using heuristic methods. The goal is to select p locations among all candidate network nodes such that
some cost function is minimised. A typical example of such a function is the overall communication cost
to deliver the service to the users of the distributed system. Locating facilities in near-optimal locations
has been extensively studied for different application domains. Most of these studies have investigated
sequential algorithms and centralised approaches. However, centralised approaches are practically infeasible
in large-scale and dynamic networks, where the problem is inherently distributed or because of the large
communication overhead and memory requirements for gathering complete information about the network
topology and the users. In this work distributed approaches to the p-median problem are investigated.
Two solutions are proposed for addressing the facility locations problem in a fully distributed environment.
Two different iterative heuristic approaches are applied to gradually improve a random initial solution
and to converge to a final solution with a local minimum of the overall cost. While the first approach
adopts a fine granularity by identifying a single change to improve the solution at each iteration, the second
approach applies changes to every component of the solution at each iteration. An experimental comparative
analysis based on simulations has shown that the approach with a finer granularity is able to deliver a better
optimisation of the overall cost with longer convergence time. Both approaches have excellent scalability
and provide an effective tool to optimise the facility locations from within the network. No prior knowledge
of the system is required, no data needs to be gathered in a centralised server and the same process is used
to identify and to deploy the facility locations solution in the network since the process is fully decentralised.

1 Introduction

Locating facilities in near-optimal locations to deliver some service to users has received a significant interest
[1] [2] [3]. A facility is an object or node (such as server or a network device) that provides services such as
a distributed memory cache, while users are the network nodes that benefit from the service offered by these
facilities. A facility can be either in an open or closed state: an open facility means it can serve connected
clients to it, while a closed one is a candidate location where a facility can be opened if required. To provide
a more efficient service to the users the topological location of an open facility should be close to many user
nodes. The p-median problem, in particular, aims to identify the set of the open facilities (medians) among all
the candidate locations such that the overall cost of the solution is minimized according to an objective function
[3][4][5]. In many scenarios the cost of the solution is associated to the communication overhead, e.g. the total
number of hops in the shortest paths that connect each user node to its closest open facility. This formulation
is very similar to the classic partitional clustering problem in data mining, best represented by algorithms such
as k-means and k-medoids, where the goal is to find the ideal locations of k centres that minimise the sum of
the squared distances from each item to its closest centre.

The main motivation for this work is that previous works on the p-median problem have used a centralised
approach based on heuristic methods for finding near-optimal solutions. In that case the required information

needs to be collected in order to apply a sequential algorithm to find a solution. A centralised approach is
infeasible in large-scale networks due to the time and space complexity of the sequential algorithms as well as
the large communication cost and latency to aggregate the global information [6, 7, 8]. Therefore, this work
investigates distributed algorithms to solve the p-median problem directly within distributed environments.

In this paper, two new approaches for solving the p-median problem in a distributed environment are
proposed. Both are designed to be executed without any centralised collection of the data in a single node.
They apply an iterative heuristic approach to improve a random initial solution and to converge to a final
solution with a local minimum of the cost.

The first approach builds a global view of the system and improves a current solution by replacing a single
facility at each iteration. The second approach, is designed on the logic of the k-medoids clustering algorithm.
At each iteration, a local view of each cluster is generated and all facilities can be updated to optimise the
solution.

Both approaches were implemented in PeerSim, a Java-based network simulator, for investigating the perfor-
mance in large-scale systems with several tests with different parameters such as the network size, the number
of facilities to be located, the total number of candidate facilities and different initial states. The results have
shown that the first protocol is more accurate at selecting the locations of the facilities, since it converges
to a lower total cost of the solution than the second protocol. However, the second one has shown a better
convergence time in optimising the solution.

The rest of the paper is organised as follows. Section 2 introduces the problem, the notation and discusses
some related work. Sections 3 and 4 describe the two proposed methods. Section 5 presents the simulations
and the comparative experimental results. Finally, Section 6 provides conclusive remarks.

2 The p-Median Problem Definition, Formulation and Related Work

The p-median problem intends to find p locations of active (open) facilities among several candidate locations
in a way that the total distance (cost) from the user nodes to the open facility nodes is minimised according to
an objective function [9] [10] [11]. As most location problems, the p-median problem is classified as NP-hard
and solved using heuristic methods [12].

The p-median problem formulation [3] [4] is formally defined as follows. Let us consider a graph G = (V,E),
where V is the set of nodes and E the set of links between nodes, the set F = {f1, f2,, fm} of m facilities,
the set U = {u1, u2,, un} of n users, where V = F ∪U , an integer number p < m, which is the target number
of open facilities, and a distance function d : U ∗ F → N of the number of hops between users and facilities. A
greedy optimisation procedure is applied to build a solution from an initial set of p randomly selected facilities
from F . The procedure seeks to identify a better neighbour solution to the current one. A neighbour solution
is a minimal alteration of the current solution that improves the cost.

A vertex substitution procedure developed by Teitz and Bart [4] is one of the standard algorithms for solving
the p-median problem [13] [14]. In vertex substitution, p candidate facilities from F are arbitrarily selected
(opened) to start the algorithm. The algorithm reallocates (swap) an open facility with one of the candidate
(closed) facilities whenever the swap improves the solution. The algorithm then iterates from the existing
solution looking for another pair of facilities to be swapped to improve the solution until the best solution is
reached. The algorithm is then terminated with a local optimum solution.

Building up on the vertex substitution algorithm, the fast interchange heuristics algorithm is proposed by
Whitaker [15]. It implements a swap once a profitable facilities pair is found. The removed facility is deleted
from F and never comes back to the solution [3].

Another study has been done by Hansen and Mladennovic, who used the best improvement strategy in which
all possible swaps are evaluated, then the most profitable one is executed. In addition, the way to finding the
best facility to open, which is used in the previous method, is evaluated to be less complicated [16].

Based on the above studies, another method to solve the p-median problem was suggested by Resende and
Werneck [3]. In their study, all possible swaps were evaluated according to equation 1 and the most profitable
pair was chosen for the swap.

profit(fi, fr) = gain(fi)− loss(fr) + extra(fi, fr) (1)

As noticed from equation 1, the first component gain is associated with the candidate facility fi to be
inserted in the solution. The gain value is the amount of distance saved by reallocating some user nodes to fi,
for which fi is closer than their current closest facility. The functions d1(u) and d2(u) are used to indicate the
distance from the user node u and, respectively, the closest and second closest open facilities φ1(u) and φ2(u).
The gain value is computed for all candidates fi according to the equation 2, so that it results in a vector of
size m− p.

2

gain(fi) =
∑
u∈U

max (0, d1(u)− d(u, fi)) (2)

As a consequence of removing the open facility fr from the solution, users assigned to it must be reassigned
to their second closest open facility φ2, which is further away than fr by definition. This leads to an additional
cost that is identified by a loss function and is computed according to the equation 3.

loss(fr) =
∑

u∈U :φ1(u)=fr

[d2(u)− d1(u)] (3)

However, some of the user nodes, which were assigned to the removed facility fr, are in fact assigned to fi
rather than their second closest facility, leading to an additional saving in the total cost. This affects the total
cost of the solution and a correction factor called extra profit has to be included for these cases. The extra
value is computed as in equation 4.

extra(fi, fr) =
∑

u∈U :[φ1(u)=fr]∧[d(u,fi)<d2(u)]

[d2(u)−max (d(u, fi), d1(u))] (4)

In a distributed environment the information about the network topology, the users and the facilities needs
first to be collected in a server in order to compute a solution with a centralised approach. Moreover, once the
solution is computed, it will have to be distributed among the nodes in the network for its deployment. This
process will then repeat every time there is need to update the solution. In the remainder, two novel distributed
protocols, DPM and KM, are presented to solve the p-median problem directly in a distributed environment
without prior knowledge about the network topology. No data needs to be gathered in a centralised server
and the same process is used to identify and to deploy a p-median solution in the network since the process is
intrinsically distributed.

3 The Distributed p-Median (DPM) Protocol

As shown in figure 1, the DPM protocol design is based on three main phases to overcome the synchronisation
problems of the distributed environment. It is assumed that an initial solution is available, e.g. an initial random
solution of p open facilities. The protocol is started with phase 1 by sending broadcast messages from all
facilities to all nodes in the network. The user nodes are gradually building a view of facilities in the network
and determine the closest open facility. Each user node joins its closest open facility via a join message. From
the join messages each open facility builds a view of the user nodes assigned to it.

Thereafter, the facility nodes transit to phase 2. In this phase, the open facilities exchange the required
information to build a distributed global view about the network and determine the best pair of facilities to
swap in the current solution.

In phase 3, the open facilities implement the swap. Both of phases 2 and 3 are repeatedly executed to
improve the solution until convergence.

The following subsections describe the details of each phase of the protocol.

3.1 Phase 1: Initialisation and Information Collection

In Phase 1 all the candidate (open and closed) facilities disseminate a broadcast message to advertise their
presence and to facilitate the computation of the shortest paths. This message holds specific information about
the facility: ID, status and the distance to reach the facility in number of hops. As described in algorithm 1,
from the broadcast messages each user node builds a view about the facilities in the network, which is used to
select the closest open facility to join, as further explained in the subsections below.

3.1.1 Build a user partial view.

At the start of this phase, the user nodes are kept waiting until receipt of the facility broadcast messages. As
soon as a user node receives a new broadcast message, it creates a corresponding local user record by extracting
the information from the broadcast message payload, such as the ID of the facility that sends the message, the
shortest distance to the facility, the status of the facility and some routing information (e.g., the next hop to
reach the facility).

Due to the randomness of the flooding approach for the broadcast messages, the user node may receive a
broadcast message from the same facility several times via different paths. If the message comes from a shorter
path, the user node updates its local user record, increments the distance field, and forward the message to all
its neighbours except the source.

3

Phase1:

Initialisation and

information

collection

Phase2:

Computing the

best pair to

swap

Phase3:

Implementing

the swap

Convergence

Asynchronous

transition to phase 2

Synchronous

transition to

phase 3
No more profit

Swap (fi, fr)

Figure 1: The DPM protocol consists of three main phases. In phase 1 facility information is disseminated over
the network and user nodes join their closest open facilities. In phase 2 the open facilities find the best swap of
facilities < fi, fr > to minimise the cost. In phase 3 the facilities implement the swap.

3.1.2 Join the closest open facility.

While there are no more new messages, the user node computes its loss value, gain and extra vectors. It then
sends them to the closest open facility which is determined from its local user record.

When the facility receives the join message from a user node, it updates its local record by adding the user’s
loss value to the local facility value and the user’s gain and extra vector values to their corresponding values
in the local facility record, as shown in figure (2). When all join messages are received, the open facilities can
transit to phase 2.

3.2 Phase 2: Exchange the Necessary Information and Find the Best Pair to Swap

Each open facility fr is associated to a subset (a cluster) of user nodes, which have identified fr as the closest
open facility from which to receive the service.

At the transition to phase 2, an open facility fr has determined its local value of loss(fr) and the two vectors
gain(fi) and extra(fi, fr) for the local cluster. In this phase, the open facilities need to exchange and aggregate
these local values and vectors to build a global view of the network and of the current p-median solution. Figure
3 shows the collective communication operations (gather and sum), for the aggregation of local information into
global information by means of facility exchange messages.

The global loss, gain and extra are initialised with the local values and vectors. When an open facility
receives an exchange message containing the remote contribution to the global information, it aggregates the
loss of the message into a global loss, adds the gain(fi) to the global gain vector and collects the extra(fi, fr)
to build a global extra(fi, fr).

As shown in algorithm 2, when an open facility receives p − 1 number of exchange messages, it computes
the profit values according to the equation 1 for all possible pairs < fi, fr >, where fi is a closed facility to be
inserted in the solution and fr is an open facility to be removed from the solution. The pair of facilities that
provides the greatest profit is chosen for the swap. Based on the shared global view all the open facilities take
the same decision by deterministically choosing the same pair of facilities < f∗i , f

∗
r > for the swap and thus

transiting to phase 3 to implement the swap.

4

Algorithm 1: Phase 1 - initialisation and information collection, all the facilities send broadcast
messages < FID, distance, status > to all nodes, where FID is a unique facility ID and the binary
status indicates if the facility is open or closed in the current solution. The user nodes build summarised
view about the facilities in the network.

1 forall open and closed facilities do
2 Send a facility broadcast message m =< FID, 1, status > to all neighbours

3 At event: a facility broadcast message is received at a user node:
4 if the m.FID is not in the user local table then
5 Add the message payload to the user local table
6 m.distance++
7 Forward the message to all neighbours except the source

8 else if the m.distance field < the current matching record.distance then
9 Update the local table

10 m.distance++
11 Forward the message to all neighbours except the source

12 else
13 Drop the message /* The FID message is coming from a longer path */

14 At event: a facility broadcast message is received at a facility node:
15 if the m.FID != the local facility ID then
16 m.distance++
17 Forward the message to all neighbours except the source

18 else
19 Drop the message /* message of the same facility */

Algorithm 2: Phase 2 - The open facilities exchange the local information and build the same global
view. The best pair of candidate facilities < f∗i , f

∗
r > are selected for a swap.

1 Initialise the global table with the local facility record
2 Set counter to one
3 max profit = 0
4 f∗r= null
5 f∗i = null
6 forall open facilities excluding itself do
7 send a facility exchange message with the local information records to a remote open facility

8 At event: receiving a facility exchange message
9 Add the message payload to the global table

10 counter++
11 if (counter == p) then
12 for all fi in the global table do
13 for all fr in the global table do
14 compute profit(fi, fr)
15 if profit(fi, fr) > max profit then
16 f∗r = fr
17 f∗i = fi

5

User- extra User- gain

Summation
Summation

cluster gain

Loss (fr)

Open Facility Local Record

cluster extra

User Local Record

Summation

User-loss

fi fi

Figure 2: The open facility builds a within-cluster knowledge from the join messages of the user nodes

3.3 Phase 3: Swap Implementation

As shown in algorithm 3, in this phase the candidate f∗r sends a change status message to f∗i asking to change
its status to open and to accept join messages from user nodes. The f∗r also send a SWAP < f∗i , f

∗
r > message

to its user nodes (local cluster). If the user node u is closer to the inserted facility f∗i than to its second closest
open facility φ2(u), then u sends a join message to f∗i , otherwise it sends it to φ2(u).

The current open facilities in the system inform the user nodes in their clusters about the swap by sending
an update solution < f∗i , f

∗
r > message. If a user node u is closer to f∗i than to its current open facility

φ1(u), then u leaves its current cluster and sends a join message to f∗i .
The solution at this stage is reconfigured. Accordingly, the weight values of the clusters are changed. This

may lead to find another pair of facilities to swap in the next iteration to improve the solution further. The
process is repeated from phase 2 and the total cost keeps improving until reaching the best (local minimum)
configuration for the locations of the candidate facilities, given the initial solution.

3.4 Convergence

The convergence status is the final state of the solution, since no more swaps can improve the solution.

4 The k-Medoids (KM) Protocol

The second proposed approach is the k-medoids (KM) protocol. This is inspired by the classic Partitioning
Around Medoids (PAM), or k-medoids, clustering algorithm [17]. The main idea of the KM protocol is to
partition the network around the open facilities, then to iteratively carry out facility swaps with a similar
heuristic method used by the k-medoids clustering algorithm. The KM protocol is organised in three main
phases, as explained in the subsections below.

4.1 KM Phase 1: Information Dissemination and Clusters Configuration

Phase 1 is started by the announcement of the facilities about their locations with broadcast messages similarly
to the DPM protocol. Nodes gradually build a summarised view of the available open facilities in the network.
They build a local view of facilities, including ID, distance and status. Finally user nodes join the closest open
facility forming p clusters. A cluster Ck is the set of user nodes associated to the open facility fk, such that the
distance d(u, fk) is minimal in the current solution, i.e. φ1(u) = fk.

During this phase, each open facility (medoid) builds a local table of the closed facilities (candidate medoid)
and their associated cost before moving to Phase 2, as shown in algorithm 4.

6

Global gain extra gain

Summation

Global Information

Gather

Global loss

Gather

Global extra

loss

Local information

fi fi

fr

fr

Figure 3: Collective communication operations (gather and sum) among the open facilities for the aggregation
of local information to build a global view

4.2 KM Phase 2: Find the Best fi to Swap

As shown in algorithm 5, each medoid fk computes the cost of its cluster Ck as the sum of the contributed cost
values of the users in the cluster (u ∈ Ck), as per equation (5). Then it evaluates all the candidate facilities
that could be opened within its cluster by computing the cost of these closed facilities as if they would be
swapped with the current medoid. The total cost of the solution is given in equation (6). If the cost of one of
the candidate facility fi is lower than the cost of the medoid fk, then the solution is updated in phase 3.

cost(Ck) =
∑
u∈Ck

d(u, fk) (5)

cost({Ck}) =
∑

0<k≤p

cost(Ck) (6)

4.3 KM Phase 3: Update the medoids of the clusters

In this phase, as shown in algorithm 6, all clusters update their medoids independently and in parallel. The
update process is implemented as following:

1. The medoid informs the candidate fi with the swap by sending a change status message. At the event
of receiving the change status message; fi changes its status to open and get ready for receiving join
messages from both user and closed facility nodes.

2. The medoid informs the users and the closed facilities in its cluster of the swap by sending them a swap
<fi, fr> message. The user and the closed facility nodes update their local table by changing the status
of fi to open and the status of fr to closed, determine a better, if any, closest open facility to join.

3. The medoid informs all other open facilities in the system of the swap by sending cluster update<fi,
fr> message to the medoids of all other clusters. At the event of receiving cluster update<fi, fr>
message, the medoid informs the user and closed facilities nodes in its clusters about the swap.

4.4 Convergence State

Phases 2 and 3 are repeatedly executed and the clusters medoids are updated continuously until no more update
messages are received: in this case the facilities make a transition into the convergence state and the algorithm
is terminated in a solution with a locally optimal cost.

7

Algorithm 3: Phase 3 - Implementing the swap < f∗i , f
∗
r >

1 if this node is an open facility then
2 if this node is f∗r then
3 this.status = closed
4 send message change status to f∗i

5 forall users in the local cluster do
6 Send a swap < f∗i , f

∗
r > message to user

7 At event: received message change status:
8 this.status = open

9 At event: received a swap < f∗i , f
∗
r > message:

10 Update the local user record
11 if φ1 == f∗r then
12 if f∗i closer than φ2 then
13 send join message to f∗i

14 else
15 send join message to φ2

16 else if f∗i closer than φ1 then
17 send leave message to φ1
18 send join message to f∗i

5 Simulation and Experimental Results

A Java-based discrete-event P2P simulation tool called PeerSim [18] is used to simulate the proposed protocols.
PeerSim allows simulating large networks with different configurations. In addition to its ability to observe the
internal state of nodes in the simulated topology, it allows to keep track of the messages between the facilities
and the user nodes. This aids in the performance analysis of the protocols.

The DPM and KM protocols are extensively tested over a range of the network size (up to 500K nodes) of
artificial and real network topologies.

Figure 4(a) shows the run of both protocols until convergence: the mean and the standard deviation over
10 trials with different randomly chosen initial solutions are shown. The results demonstrate a reduction on the
overall cost of the solution at each iteration (swap) until convergence for both protocols. However, KM protocol
shows a higher cost of the solution during all cycles. This confirms that the DPM protocol based on global
knowledge is more effective in improving the solution cost than the KM protocol, which improves the location
of the facilities based on local cluster information.

As shown in figure 4(b), the KM protocol converges faster than the DPM protocol. However, the DPM
protocol is found to be capable to identify better final locations for the facilities.

For testing the DPM and KM on different graphs, many trials were carried out on different network sizes
(figure 5(a)): the mean cost and the standard deviation of these trials showed for all graph sizes that the DPM
protocol provides a lower cost than the KM protocol.

Both protocols are also tested on a varying number (m) of the available candidate locations for the facilities
on the same topology. As shown in figure 5(b), DPM takes better advantage than KM of the larger search space
for the solution of the p-median problem.

Since both the DPM and KM protocols depend on network messages for addressing the p-median problem,
the communication overhead in terms of the number of messages is analysed for the different types of messages.
As shown in figure 6, the most significant number of messages among the nodes is the facility broadcast
messages. These messages flood the network to propagate information from all facilities to all user nodes.

Practically, each facility is meant to serve nodes in its cluster, typically a local part of the topology. Further
investigation has shown that it is unnecessary to forward the broadcast messages to the whole network since it
causes a heavy load on the network and an unnecessary delay. Instead, the outreach of the broadcast messages
can be restricted to a maximum number of hops (limited time-to-live). This restriction is not affecting the
performance of the protocols, while it is significantly reducing the communication cost, as shown in figure 6.

8

Algorithm 4: KM Phase 1 - The information about all facilities is disseminated in the network. The
user nodes and the closed facilities build a summarised view about the available open facilities in the
network.

1 forall open and closed facilities do
2 Send a facility broadcast message m =< FID, distance = 1, status > to all neighbours

3 At event: receiving a facility broadcast message at user node:
4 if the m.FID is not in the user local table then
5 Add the message payload <FID, distance, status> to the user local table record
6 m.distance++
7 Forward the message m to all neighbours except the source

8 else if the m.distance < the current FID.distance then
9 Update the local table

10 m.distance++
11 Forward the message to all neighbours except the source

12 else
13 Drop the message /* The same message has been received from a longer path*/

14 At event: receiving a broadcast message at an open facility node
15 m.distance++
16 Forward the message to all neighbours except the source

17 At event: receiving a broadcast message at a closed facility node:
18 if m.FID is not in the local facility record then
19 Add the message payload <FID, distance, status> to the user local table record
20 m.distance++
21 Forward the message to all neighbours except the source

22 else if the m.distance < the current FID.distance then
23 Update the local table
24 m.distance++
25 Forward the message to all neighbours except the source

26 else
27 Drop the message /* The same message has been received from a longer path*/

Algorithm 5: KM Phase 2 - Find the best fi to swap

1 Initialise The new medoid of the cluster = null
2 if This is an open facility then
3 forall Users in the cluster do
4 The cost of the cluster += user.cost
5 forall Closed facilities in the cluster do
6 The cost of the fi += user.fi.cost

7 forall Closed facilities in the cluster do
8 if current cluster cost < fi.cost then
9 The new medoid of the cluster is fi

10 if The new medoid of the cluster == null then
11 There is no swap

9

Algorithm 6: KM Phase 3 - Update the solution, the current medoid is closed and the determined
fi is opened. All the user nodes in the cluster are informed about the swap as well as all the other
medoids in the solution.

1 if This is facility == fr then
2 facility.status = closed
3 send change-status message to the fi
4 send swap <fi,fr> message to the join users and the closed facilities to inform them about the close

decision
5 send cluster-update<fi,fr> message to the other open facilities in the solution

6 At event: receiving a swap<fi,fr> message
7 update the user local table
8 determine the closest medoid
9 join the new closest medoid

10 At event: receiving a change-status message
11 facility.status = open

12 At event: receiving facility cluster-update
13 update the facility local table
14 inform the user nodes about the update

 370000

 380000

 390000

 400000

 410000

 420000

 430000

 440000

 450000

 0 20 40 60 80 100 120 140 160

C
os

t i
n

nu
m

be
r

of
 h

op
s

No. of cycles

DPM
KM

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

KM DPM

N
um

be
r

of
 c

yc
le

s

Protocol

(b)

Figure 4: Convergence analysis: mean and standard deviation over 10 trials (N= 100K, m=100, p=25)

6 Conclusions

This paper has presented two novel distributed approaches for the p-median problem in networks. The proposed
methods are executed without a prior knowledge of the network topology. Network information, such as the
topology and the set of candidate facilities and users, do not need to be gathered for a centralised execution of
a sequential algorithm. The computation in the proposed protocols is intrinsically distributed in the network
nodes.

A comparative analysis over many simulations has revealed that addressing the location problem for facilities
based on a global view of the network (as in DPM) leads to more accurate optimisation of the cost than clustering
the network and optimising each facility location based on the local view of each cluster separately (as in KM).
However, the former solution takes more cycles to converge.

The simulations have also shown that when more candidate facilities are available, both protocols can find
a better solution in terms of cost. Also in this case DPM has confirmed to have better performance in taking
advantage of more locations. However, when more locations are available both protocols require additional time
to reach convergence.

10

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

10K 20K 30K 40K 50K

T
he

 c
os

t o
f t

he
 s

ol
ut

io
n

in
 n

um
be

r
of

 h
op

s

Network size

DPM
KM

(a) Different network size

 28000

 29000

 30000

 31000

 32000

 33000

 34000

40 80 120 160 200

C
os

t i
n

nu
m

be
r

of
 h

op
s

m values

DPM
KM

(b) Different number of candidate facilities m (p = 25)

Figure 5: Cost (mean and standard deviation) of the solution at convergence

(a) DPM protocol

 0

 5×106

 1×107

 1.5×107

 2×107

 2.5×107

 3×107

 3.5×107

UnlimitedBroadcast UnlimitedOthers LimitedBroadcast LimitedOthers

N
o

of
 m

es
sa

ge
s

Messages type

(b) KM protocol

Figure 6: Comparison of communication overhead for broadcast and other types of messages, and for unlimited
and limited (maximum time-to-live) message propagation (N= 50K, m=100, p=25)

References

[1] J. Alcaraz, M. Landete, and J. F. Monge. “Design and analysis of hybrid metaheuristics for the reliability
p-median problem”. In: European Journal of Operational Research 222.1 (2012), pp. 54–64.

[2] M. T. Melo, S. Nickel, and F. Saldanha-Da-Gama. “Facility location and supply chain management–A
review”. In: European journal of operational research 196.2 (2009), pp. 401–412.

[3] M. G. Resende and R. F. Werneck. “A fast swap-based local search procedure for location problems”. In:
Annals of Operations Research 150.1 (2007), pp. 205–230.

[4] M. B. Teitz and P. Bart. “Heuristic methods for estimating the generalized vertex median of a weighted
graph”. In: Operations research 16.5 (1968), pp. 955–961.

[5] T. S. Hale and C. R. Moberg. “Location science research: a review”. In: Annals of operations research
123.1-4 (2003), pp. 21–35.

[6] H. Mashayekhi, J. Habibi, T. Khalafbeigi, S. Voulgaris, and M. Van Steen. “GDCluster: a general de-
centralized clustering algorithm”. In: IEEE transactions on knowledge and data engineering 27.7 (2015),
pp. 1892–1905.

[7] G. Di Fatta, F. Blasa, S. Cafiero, and G. Fortino. “Epidemic K-Means Clustering”. In: 2011 IEEE 11th
International Conference on Data Mining Workshops. 2011, pp. 151–158.

[8] G. Di Fatta, F. Blasa, S. Cafiero, and G. Fortino. “Fault tolerant decentralised K-Means clustering for asyn-
chronous large-scale networks”. In: Journal of Parallel and Distributed Computing 73.3 (2013), pp. 317–
329.

11

[9] O. Alp, E. Erkut, and Z. Drezner. “An efficient genetic algorithm for the p-median problem”. In: Annals
of Operations research 122.1-4 (2003), pp. 21–42.

[10] M. Labbé, D. Ponce, and J. Puerto. “A comparative study of formulations and solution methods for the
discrete ordered p-median problem”. In: Computers & Operations Research 78 (2017), pp. 230–242.

[11] M. Karatas, N. Razi, and H. Tozan. “A Comparison of p-median and Maximal Coverage Location Models
with Q–coverage Requirement”. In: Procedia Engineering 149 (2016), pp. 169–176.

[12] V. Marianov and D. Serra. “Median problems in networks”. In: Foundations of location analysis. Springer,
2011, pp. 39–59.

[13] A. I. Mahmutogullari and B. Y. Kara. “Hub location under competition”. In: European Journal of Oper-
ational Research 250.1 (2016), pp. 214–225.

[14] M. J. Hodgson, F. Shmulevitz, and M. Körkel. “Aggregation error effects on the discrete-space p-median
model: The case of Edmonton, Canada”. In: Canadian Geographer/Le Géographe canadien 41.4 (1997),
pp. 415–428.

[15] R. Whitaker. “A fast algorithm for the greedy interchange for large-scale clustering and median location
problems”. In: INFOR: Information Systems and Operational Research 21.2 (1983), pp. 95–108.

[16] N. Mladenović, J. Brimberg, P. Hansen, and J. A. Moreno-Pérez. “The p-median problem: A survey of
metaheuristic approaches”. In: European Journal of Operational Research 179.3 (2007), pp. 927–939.

[17] L. Kaufman and P. Rousseeuw. “Clustering by means of Medoids”. In: Statistical Data Analysis Based on
the L1Norm and Related Methods. 1987, pp. 405–416.

[18] A. Montresor and M. Jelasity. “PeerSim: A scalable P2P simulator”. In: Peer-to-Peer Computing, 2009.
P2P’09. IEEE Ninth International Conference on. IEEE. 2009, pp. 99–100.

12

