147 research outputs found

    First results on Martian carbon monoxide from Herschel/HIFI observations

    Full text link
    We report on the initial analysis of Herschel/HIFI carbon monoxide (CO) observations of the Martian atmosphere performed between 11 and 16 April 2010. We selected the (7-6) rotational transitions of the isotopes ^{13}CO at 771 GHz and C^{18}O at 768 GHz in order to retrieve the mean vertical profile of temperature and the mean volume mixing ratio of carbon monoxide. The derived temperature profile agrees within less than 5 K with general circulation model (GCM) predictions up to an altitude of 45 km, however, show about 12-15 K lower values at 60 km. The CO mixing ratio was determined as 980 \pm 150 ppm, in agreement with the 900 ppm derived from Herschel/SPIRE observations in November 2009.Comment: Accepted for publication in Astronomy and Astrophysics (special issue on HIFI first results); minor changes to match published versio

    High order optical sideband generation with Terahertz quantum cascade lasers

    Get PDF
    Optical sidebands are generated by difference frequency mixing between a resonant bandgap near-infrared beam and a terahertz (THz) wave. This is realized within the cavity of a THz quantum cascade laser using resonantly enhanced non-linearities. Multiple order optical sidebands and conversion efficiencies up to 0.1% are shown

    Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data

    Get PDF
    The Mw 7.7 2007 November 14 earthquake had an epicentre located close to the city of Tocopilla, at the southern end of a known seismic gap in North Chile. Through modelling of Global Positioning System (GPS) and radar interferometry (InSAR) data, we show that this event ruptured the deeper part of the seismogenic interface (30–50 km) and did not reach the surface. The earthquake initiated at the hypocentre and was arrested ~150 km south, beneath the Mejillones Peninsula, an area already identified as an important structural barrier between two segments of the Peru–Chile subduction zone. Our preferred models for the Tocopilla main shock show slip concentrated in two main asperities, consistent with previous inversions of seismological data. Slip appears to have propagated towards relatively shallow depths at its southern extremity, under the Mejillones Peninsula. Our analysis of post-seismic deformation suggests that small but still significant post-seismic slip occurred within the first 10 d after the main shock, and that it was mostly concentrated at the southern end of the rupture. The post-seismic deformation occurring in this period represents ~12–19 per cent of the coseismic deformation, of which ~30–55 per cent has been released aseismically. Post-seismic slip appears to concentrate within regions that exhibit low coseismic slip, suggesting that the afterslip distribution during the first month of the post-seismic interval complements the coseismic slip. The 2007 Tocopilla earthquake released only ~2.5 per cent of the moment deficit accumulated on the interface during the past 130 yr and may be regarded as a possible precursor of a larger subduction earthquake rupturing partially or completely the 500-km-long North Chile seismic gap

    Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): following the water trail from the interstellar medium to oceans

    Get PDF
    Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) is a space-based, MIDEX-class mission concept that employs a 17-meter diameter inflatable aperture with cryogenic heterodyne receivers, enabling high sensitivity and high spectral resolution (resolving power ≄106) observations at terahertz frequencies. OASIS science is targeting submillimeter and far-infrared transitions of H2O and its isotopologues, as well as deuterated molecular hydrogen (HD) and other molecular species from 660 to 80 ÎŒm, which are inaccessible to ground-based telescopes due to the opacity of Earth’s atmosphere. OASIS will have <20x the collecting area and ~5x the angular resolution of Herschel, and it complements the shorter wavelength capabilities of the James Webb Space Telescope. With its large collecting area and suite of terahertz heterodyne receivers, OASIS will have the sensitivity to follow the water trail from galaxies to oceans, as well as directly measure gas mass in a wide variety of astrophysical objects from observations of the ground-state HD line. OASIS will operate in a Sun-Earth L1 halo orbit that enables observations of large numbers of galaxies, protoplanetary systems, and solar system objects during the course of its 1-year baseline mission. OASIS embraces an overarching science theme of “following water from galaxies, through protostellar systems, to oceans.” This theme resonates with the NASA Astrophysics Roadmap and the 2010 Astrophysics Decadal Survey, and it is also highly complementary to the proposed Origins Space Telescope’s objectives

    Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer

    Get PDF
    ESA’s Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 Όm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet

    Jupiter science Enabled by ESA's Jupiter Icy Moons Explorer

    Get PDF
    ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 Όm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet

    Constant slip‐rate on the Doruneh strike‐slip fault, Iran, averaged over Late Pleistocene, Holocene, and decadal timescales

    Get PDF
    Varying estimates of both present‐day strain accumulation and long‐term slip‐rate on the Doruneh left‐lateral strike‐slip fault, NE Iran, have led to suggestions that it exhibits large along‐strike and/or temporal changes in activity. In this paper, we make and compare estimates of slip‐rate measured using both geodesy and geomorphology, and spanning time periods ranging from decadal to 100 ka. To image the present‐day accumulation of strain we process seven years (2003‐2010) of data from six ENVISAT tracks covering the fault, with interferograms produced for 400 km‐long strips of data in order to image the long‐wavelength signals associated with interseismic strain accumulation across the locked fault. Our analysis shows that less than 4 mm/yr – and likely only 1‐3 mm/yr ‐ of slip accumulates across the fault. Using high‐resolution optical satellite imagery we make reconstructions of displacement across six alluvial fans whose surfaces cross the fault, in four separate river catchments. We determine the ages of these fans using infra‐red‐stimulated luminescence dating combined with U‐series dating of pedogenic carbonates. The six fans vary in age from ∌10‐100 kyr, and a regression line fitted to four of these yields a slip rate of 2.5 ± 0.3 mm/yr. We conclude that within the uncertainty of our measurements the slip‐rate has remained constant over the last ∌100 ka and is representative of the strain accumulation at the present‐day. The slip‐rate that we measure is consistent with the E‐W left‐lateral Doruneh fault accommodating N‐S right‐lateral faulting by 'bookshelf' faulting, with clockwise rotation about a vertical axis

    The present-day number of tectonic plates

    Get PDF
    The number of tectonic plates on Earth described in the literature has expanded greatly since the start of the plate tectonic era, when only about a dozen plates were considered in global models of present-day plate motions. With new techniques of more accurate earthquake epicenter locations, modern ways of measuring ocean bathymetry using swath mapping, and the use of space based geodetic techniques, there has been a huge growth in the number of plates thought to exist. The study by Bird (2003) proposed 52 plates, many of which were delineated on the basis of earthquake locations. Because of the pattern of areas of these plates, he suggested that there should be more small plates than he could identify. In this paper, I gather together publications that have proposed a total of 107 new plates, giving 159 plates in all. The largest plate (Pacific) is about 20 % of the Earth's area or 104 Mm (super 2) , and the smallest of which (Plate number 5 from Hammond et al. 2011) is only 273 km (super 2) in area. Sorting the plates by size allows us to investigate how size varies as a function of order. There are several changes of slope in the plots of plate number organized by size against plate size order which are discussed. The sizes of the largest seven plates is constrained by the area of the Earth. A middle set of 73 plates down to an area of 97,563 km (super 2) (the Danakil plate at number 80, is the plate of median size) follows a fairly regular pattern of plate size as a function of plate number. For smaller plates, there is a break in the slope of the plate size/plate number plot and the next 32 plates follow a pattern of plate size proposed by the models of Koehn et al. (2008) down to an area of 11,638 km (super 2) (West Mojave plate # 112). Smaller plates do not follow any regular pattern of area as a function of plate number, probably because we have not sampled enough of these very small plates to reveal any clear pattern. Copyright 2016 The Author(s) and Harrison
    • 

    corecore