258 research outputs found

    New family of deep-sea planktonic copepods, the Paralubbockiidae (Copepoda: Poecilostomatoida)

    Get PDF
    The deep-sea planktonic copepod Paralubbockia longipedia is redescribed from the type specimens, and a new family of Poecilostomatoida is proposed to accommodate it. The Paralubbockiidae fam. nov. is characterized by two unique plesiomorphies, the ventrally located fifth legs and the retention of a separate maxillulary palp, and by the apomorphic states of the endopods of the swimming legs and of the antenna. The sister group of the Paralubbockiidae is identified as the family Oncaeidae. These are the only two poecilostomatoid families that have retained a vestige of the geniculation mechanism in the antennules of the male. The genus Laitmatobius Humes is here regarded as incertae sedis within the lineage comprising the Oncaeidae and the Parulubbockiidae

    An evaluation of Sea Search as a citizen science programme in Marine Protected Areas

    Full text link
    Citizen science involves collaboration between multi-sector agencies and the public to address a natural resource management issue. The Sea Search citizen science programme involves community groups in monitoring and collecting subtidal rocky reef and intertidal rocky shore data in Victorian Marine Protected Areas (MPAs), Australia. In this study we compared volunteer and scientifically collected data and the volunteer motivation for participation in the Sea Search programme. Intertidal rocky shore volunteer-collected data was found to be typically comparable to data collected by scientists for species richness and diversity measures. For subtidal monitoring there was also no significant difference for species richness recorded by scientists and volunteers. However, low statistical power suggest only large changes could be detected due to reduced data replication. Generally volunteers recorded lower species diversity for biological groups compared to scientists, albeit not significant. Species abundance measures for algae species were significantly different between volunteers and scientists. These results suggest difficulty in identification and abundance measurements by volunteers and the need for additional training requirements necessary for surveying algae assemblages. The subtidal monitoring results also highlight the difficulties of collecting data in exposed rocky reef habitats with weather conditions and volunteer diver availability constraining sampling effort. The prime motivation for volunteer participation in Sea Search was to assist with scientific research followed closely by wanting to work close to nature. This study revealed two important themes for volunteer engagement in Sea Search: 1) volunteer training and participation and, 2) usability of volunteer collected data for MPA managers. Volunteer-collected data through the Sea Search citizen science programme has the potential to provide useable data to assist in informed management practices of Victoria&rsquo;s MPAs, but requires the support and commitment from all partners involved.<br /

    Historical biogeography of the neotropical Diaptomidae (Crustacea:Copepoda)

    Get PDF
    Introduction: Diaptomid copepods are prevalent throughout continental waters of the Neotropics, yet little is\ud known about their biogeography. In this study we investigate the main biogeographical patterns among the\ud neotropical freshwater diaptomid copepods using Parsimony Analysis of Endemicity (PAE) based on species records\ud within ecoregions. In addition, we assess potential environmental correlates and limits for species richness.\ud Results: PAE was efficient in identifying general areas of endemism. Moreover, only ecoregion area showed a\ud significant correlation with diaptomid species richness, although climatic factors were shown to provide possible\ud upper limits to the species richness in a given ecoregion.\ud Conclusion: The main patterns of endemism in neotropical freshwater diaptomid copepods are highly congruent\ud with other freshwater taxa, suggesting a strong historical signal in determining the distribution of the family in the\ud Neotropics.We would like to thank to Professor Edinaldo Nelson dos Santos Silva (INPA, Brazil) for useful insight during this study. We also thank FAPESP (process 2008/02015-7, 2009/00014-6, 2011/18358-3) for financial support to GPN; and CNPq for financial support to DP (process 141702/2006-0) and MRP (process 304897/2012-4)

    Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS) and related databases

    Get PDF
    The World Register of Marine Species is an over 90% complete open-access inventory of all marine species names. Here we illustrate the scale of the problems with species names, synonyms, and their classification, and describe how WoRMS publishes online quality assured information on marine species.Within WoRMS, over 100 global, 12 regional and 4 thematic species databases are integrated with a common taxonomy. Over 240 editors from 133 institutions and 31 countries manage the content. To avoid duplication of effort, content is exchanged with 10 external databases. At present WoRMS contains 460,000 taxonomic names (from Kingdom to subspecies), 368,000 species level combinations of which 215,000 are currently accepted marine species names, and 26,000 related but non-marine species. Associated information includes 150,000 literature sources, 20,000 images, and locations of 44,000 specimens. Usage has grown linearly since its launch in 2007, with about 600,000 unique visitors to the website in 2011, and at least 90 organisations from 12 countries using WoRMS for their data management.By providing easy access to expert-validated content, WoRMS improves quality control in the use of species names, with consequent benefits to taxonomy, ecology, conservation and marine biodiversity research and management. The service manages information on species names that would otherwise be overly costly for individuals, and thus minimises errors in the application of nomenclature standards. WoRMS' content is expanding to include host-parasite relationships, additional literature sources, locations of specimens, images, distribution range, ecological, and biological data. Species are being categorised as introduced (alien, invasive), of conservation importance, and on other attributes. These developments have a multiplier effect on its potential as a resource for biodiversity research and management. As a consequence of WoRMS, we are witnessing improved communication within the scientific community, and anticipate increased taxonomic efficiency and quality control in marine biodiversity research and management

    The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata

    Get PDF
    © The Author(s). 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
    corecore