139 research outputs found

    Integrated economic and environmental assessment of waste policy instruments

    Get PDF
    The need for new policy instruments supporting the on-going transition from end-of-pipe waste treatment to resource management has been recognized in European policy. Instruments need to be carefully assessed before implementation to promote the desired changes and avoid problem shifting. Mathematical models may assist policy makers in such assessments. This paper presents a set of soft-linked models for assessing the economic and environmental impacts of policy instruments for both the prevention and management of waste and discusses its strengths and limitations. Consisting of (1) a macro-economic model, (2) a systems engineering model for waste management and (3) a life cycle assessment model for waste management, the set is primarily suited to assessing market-based instruments and environmental regulations. Considerable resources were needed for developing and using the set, and there are clear limits as to what can be addressed. However, if only one of the models had been used, neither the range of instruments nor the scope of impacts would have been possible to cover. Furthermore, soft-linked models allow many disciplines to contribute within one harmonized framework. Such integrated assessments may become increasingly useful for continuing the implementation of policy for sustainable governance of society’s material resources

    IMPACT ASSESSMENT OF ENHANCED EXPOSURE FROM NATURALLY OCCURRING RADIOACTIVE MATERIALS (NORM) WITHIN LCA

    Get PDF
    The potential impact of ionising radiation from enhanced exposure to Naturally Occurring Radioactive Materials (NORM) to humans and the environment is not currently accounted for sufficiently in Life Cycle Assessment (LCA). Here we present midpoint and endpoint characterisation factors resulting from the implementation of impact assessment models for human health and ecosystems for NORM exposure. These models build upon existing fate, exposure and effect models from the LCA and radiological literature. The newly developed models are applied to a theoretical study of the utilisation of bauxite residue, a by-product of alumina processing enriched in natural radionuclides, in building materials. The ecosystem models have significant sensitivity to uncertainties surrounding the differential environmental fate of parent and daughter radionuclides that are produced as a part of decay chains, and to assumptions regarding long term releases from landfill sites. However, conservative results for environmental exposure suggest that in addition to landfill of materials, power consumption (burning coal and mining uranium) is a potentially significant source of radiological impact to the environment. From a human perspective, exposure to NORM in the use phase of building materials is the dominant source of impact, with environmental releases of nuclides playing a comparatively minor role. At an endpoint level, the impact of NORM exposure is highly significant in comparison to other impact categories in the area of protection of human health. This highlights the importance within LCA of having sufficient impact assessment models to capture all potential impacts, such that issues of burden shifting between impact measures can be captured, interpreted and resolved in the optimisation of product systems.https://doi.org/10.1016/j.jclepro.2017.11.13

    Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01

    Get PDF
    In a recent paper, Sörme et al. (Environ. Impact Assess. Rev., 56, 2016), took a first step towards an indicator of a national chemical footprint, and applied it to Sweden. Using USEtox 1.01, they calculated national impact potentials for human toxicity and ecotoxicity. The results showed that zinc dominated impacts, both for human toxicity and ecotoxicity. We calculated updated indicators of the Swedish national human toxicity and ecotoxicity footprint using USEtox 2.01. We also compared impact potentials based on USEtox with the mass of chemical emissions. The two model versions produced relatively consistent results. Zinc is still a major contributor to the human toxicity and ecotoxicity impact potentials when characterized with USEtox 2.01. The mass-based indicator pinpoints somewhat different substances than the impact-based indicators

    The MIIM LCA PH.D. club: Presentation and introduction

    Get PDF
    During 1998, the number of completed Ph.D.s on Life Cycle Assessment (LCA) seemed to be larger than any previous year. In order to mark this achievement, a special series is being published in the International Journal of LCA. In this introductory paper, the Class of MUM outline the results of their research work over the last few years. A number of common points and tendencies have emerged through this work. First of all, the scope-dependency of LCA models: some of us have discerned in particular the need to distinguish between descriptive and change-oriented LCAs. Secondly, a number of the theses focus on the interaction between LCA and decision-making. Thirdly, the benefits of pluralism in impact assessment and allocation have been advocated in some of the theses. Finally, it may be noted that in these theses structuring the management of controversial issues seems to be preferred to eliminating such issues by a process of harmonisation. Future papers will map out the intellectual journeys undertaken in the development of these theses and discuss key findings in more detai

    The sustainable materials roadmap

    Get PDF
    Over the past 150 years, our ability to produce and transform engineered materials has been responsible for our current high standards of living, especially in developed economies. However, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of the economy, energy, and climate. We are at the point where something must drastically change, and it must change now. We must create more sustainable materials alternatives using natural raw materials and inspiration from nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments (LCAs) based on reliable and relevant data to quantify sustainability. We need to seriously start thinking of where our future materials will come from and how could we track them, given that we are confronted with resource scarcity and geographical constrains. This is particularly important for the development of new and sustainable energy technologies, key to our transition to net zero. Currently 'critical materials' are central components of sustainable energy systems because they are the best performing. A few examples include the permanent magnets based on rare earth metals (Dy, Nd, Pr) used in wind turbines, Li and Co in Li-ion batteries, Pt and Ir in fuel cells and electrolysers, Si in solar cells just to mention a few. These materials are classified as 'critical' by the European Union and Department of Energy. Except in sustainable energy, materials are also key components in packaging, construction, and textile industry along with many other industrial sectors. This roadmap authored by prominent researchers working across disciplines in the very important field of sustainable materials is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the sustainable materials community. In compiling this roadmap, we hope to aid the development of the wider sustainable materials research community, providing a guide for academia, industry, government, and funding agencies in this critically important and rapidly developing research space which is key to future sustainability.journal articl

    Policy Instruments towards a Sustainable Waste Management

    No full text
    The aim of this paper is to suggest and discuss policy instruments that could lead towards a more sustainable waste management. The paper is based on evaluations from a large scale multi-disciplinary Swedish research program. The evaluations focus on environmental and economic impacts as well as social acceptance. The focus is on the Swedish waste management system but the results should be relevant also for other countries. Through the assessments and lessons learned during the research program we conclude that several policy instruments can be effective and possible to implement. Particularly, we put forward the following policy instruments: “Information”; “Compulsory recycling of recyclable materials”; “Weight-based waste fee in combination with information and developed recycling systems”; “Mandatory labeling of products containing hazardous chemicals”, “Advertisements on request only and other waste minimization measures”; and “Differentiated VAT and subsidies for some services”. Compulsory recycling of recyclable materials is the policy instrument that has the largest potential for decreasing the environmental impacts with the configurations studied here. The effects of the other policy instruments studied may be more limited and they typically need to be implemented in combination in order to have more significant impacts. Furthermore, policy makers need to take into account market and international aspects when implementing new instruments. In the more long term perspective, the above set of policy instruments may also need to be complemented with more transformational policy instruments that can significantly decrease the generation of waste
    corecore