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Abstract: The need for new policy instruments supporting the on-going transition from end-of-pipe
waste treatment to resource management has been recognized in European policy. Instruments need
to be carefully assessed before implementation to promote the desired changes and avoid problem
shifting. Mathematical models may assist policy makers in such assessments. This paper presents a set
of soft-linked models for assessing the economic and environmental impacts of policy instruments for
both the prevention and management of waste and discusses its strengths and limitations. Consisting
of (1) a macro-economic model, (2) a systems engineering model for waste management and (3) a life
cycle assessment model for waste management, the set is primarily suited to assessing market-based
instruments and environmental regulations. Considerable resources were needed for developing
and using the set, and there are clear limits as to what can be addressed. However, if only one of the
models had been used, neither the range of instruments nor the scope of impacts would have been
possible to cover. Furthermore, soft-linked models allow many disciplines to contribute within one
harmonized framework. Such integrated assessments may become increasingly useful for continuing
the implementation of policy for sustainable governance of society’s material resources.

Keywords: waste policy; waste prevention; waste management; CGE models; systems engineering
models; life cycle assessment; life cycle sustainability analysis

1. Introduction

Over the years, a mix of policy measures has been applied in order to shift waste management
in a more sustainable direction. Modern Swedish waste legislation dates from 1975, when a bill was
passed stating that (1) waste is a resource that should be utilized and (2) those who generate waste
are responsible for it. Since then, policy has been used mainly to incite a transition from landfilling
to recovery of material and energy resources. Examples are the extended producer responsibility
introduced in 1994 [1–3], restrictions against landfilling in 1997 [4], a landfilling tax in 2000 [5], banning
of landfilling of combustible waste in 2002 and of organic waste in 2005 [6], a tax on waste incineration
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between 2006 and 2010 [7], the national environmental objectives in 1999 [8] and the national waste
plans in 2005 and 2012 [9,10].

More recently, waste management is being discussed in the context of resource-efficiency and a
circular economy in the European Union (EU): how to use natural material resources more efficiently
and to avoid waste, but to use unavoidable waste as a resource [11]. EU member states are required to
develop waste prevention programs taking into account the whole life cycles of materials with the goal
to decouple environmental impacts associated with waste generation from economic growth [12]. The
use of economic instruments is said to play a crucial role in the achievement of waste prevention and
management objectives (ibid.). The Swedish national waste plan also supports the use of economic
instruments and even claims they are needed in order to make stakeholders act responsibly [10].

Although there is support for the waste hierarchy, overall goals for a more resource-efficient
Europe and recognition of the need for policy instruments supporting this transition, few instruments
for waste prevention and increased recycling are yet in place. If such instruments are to be introduced,
they need to be carefully designed and assessed before implementation in order to promote the desired
changes and avoid problem shifting. It is of importance to assess links between economic growth,
generation and management of waste and resulting environmental impacts and how these may play
out in an uncertain future.

Ex ante assessments using mathematical models can assist in designing robust policy instruments.
The models can be “used as experimental vehicles in which options may be explored without the
risks and costs that accompany real-world experimentation” [13], and they also provide a platform for
stakeholder discussions. Mathematical models for waste management planning have been developed
since the 1960s. However, few integrate economic and environmental aspects, and even fewer are used
for policy assessment. Furthermore, none simultaneously address macro-economy, waste management
technology, environmental impacts and their links (see Section 2).

We have developed and used a set of linked mathematical models for assessing economic and
environmental impacts of future national waste policy instruments. The aim of this paper is to
describe the modelling approach and to identify and discuss its strengths and limitations. The work
was conducted as part of “Towards Sustainable Waste Management” (TOSUWAMA), a research
program funded by the Swedish Environmental Protection Agency, with the purpose to propose and
evaluate policy instruments and strategic decisions that can contribute to developing Swedish waste
management in a more sustainable direction. Results and conclusions from the overall assessment of
policy instruments have been published in [14].

2. Models for Economic and Environmental Assessment of Waste Generation and Management

Mathematical models for waste management decision support have often been used for comparing
technologies, but less frequently for assessing strategies, policies or specific policy instruments. They
initially focused on issues such as routing of collection vehicles, location of facilities and optimization
of treatment capacity [15–17]. Later, the scope expanded to wider waste management, and besides
economic parameters, environmental parameters were also addressed [18–23]. From the late 1990s,
the development of Life Cycle Assessment (LCA) models of waste management has increased [24–27].
Such LCA models have been used to study the potential environmental impacts in, for instance,
municipal waste planning [28–30], evaluate regional and national strategies or policies [31] and
compare treatment technologies [32,33]. LCA models of waste management have also been combined
with energy system models for studying the environmental impacts of waste management options
involving energy recovery [34]. The economic value of energy recovery from waste in relation to other
energy conversion options has been addressed by combining systems engineering models [35]. The few
assessments of specific policy instruments include a tax on waste incineration [36–38], combinations
of policy instruments for landfill diversion and material recycling [39–41] and a scrap-tire recycling
policy [42].
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Such waste management models, traditionally developed within engineering sciences, can be
labelled as “bottom-up” approaches. Models represent physical flows (materials and energy) and
technologies for processing flows. “Top-down” approaches, in contrast, rely on macro-economy
theories, and models represent economic flows of materials, energy, labor and capital. The relation
between economic activity and waste generation has, to some extent, been studied with such top-down
models, notably Computable General Equilibrium (CGE) models and econometric models. CGE
models were used to calculate future waste quantities from manufacturing [43,44] and to examine the
effect of trade liberalization on solid waste generation [45], the sectoral impacts of a tax on hazardous
waste in the mining industry [46] and the effect of a tax on household waste [47]. The decoupling
of solid waste generation from income growth by introducing unit-based pricing schemes for waste
collection was analyzed within an applied general equilibrium model [48]. An approach similar to
that of [43] was applied to study future waste quantities in Sweden and to assess the decoupling of
waste generation from economic growth [49], but extended it by linking production factors to waste
generation derived from national waste statistics [50]. A review of the coverage of environmental
indicators in CGE models found that decoupling between waste generation and economic growth was
captured by four out of eighteen models [51].

In sum, most efforts have been directed towards estimating future waste generation with
top-down economic models and assessing waste management options with bottom-up engineering
models. Less attention has been paid to quantifying the combined economic and environmental
impacts of waste generation growth and to assessing waste policy instruments. This is consistent with
the well-recognized general lack of tools that can be used in broader Life Cycle Sustainability Analysis
(LCSA) [52–58]. The set of linked models presented in this paper may contribute to overcoming this
gap. It combines top-down and bottom-up modelling. It also combines different systems perspectives:
the economy-wide system, the waste-management system and the life cycle. It thus shows that it is
possible to construct the set of tools that has been asked for within the field of LCSA [54].

3. A Set of Linked Models for Assessment of Waste Policy

The set as developed links three models for enabling the assessment of economic and
environmental impacts of waste policy instruments introduced (1) on a macro-economic level for
preventing the generation and hazardousness of waste or (2) directly in the waste management sector
for shifting waste management activities. The models, their integration into a set and its use are
described in the following section.

3.1. The Macro-Economic Model EMEC

The top-down model EMEC (Environmental Medium-Term Economic Model) is a static CGE
model of the Swedish economy, initially developed and used for analyzing the interaction between
the economy and the environment. The model was evaluated through a number of climate policy
analyses conducted in Sweden during the past fifteen years and reported by governmental committees
and in peer-reviewed journals [49,59,60]. As part of TOSUWAMA, the model was further developed
to include also waste intensities by relating economic activity to the generation of waste in physical
quantities [61,62]. The waste categories modelled are presented in Tables A1 and A2.

EMEC models 26 industry sectors and 33 composite commodities. Produced goods and services
are used together with imports to create composite commodities for domestic use, but can also be
exported. Production requires primary factors (two kinds of labor and capital) and inputs of materials,
energy and transports (Figure 1). Households maximize utility subject to an income restriction. Firms
maximize profit subject to resource restrictions. Disposal of public services, produced by a single
government agent, is subject to a budget constraint. The foreign sector’s import and export activities
are governed by an exogenously-given trade balance. Sweden’s products are assumed to have small
shares of the total demand on world markets, and therefore, any quantity of exported goods must be
sold at given world market prices. The sectors modelled are presented in Table A3.
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Figure 1. Conceptual model of the flows in the economy as modelled in the Environmental
Medium-Term Economic Model (EMEC).

Waste generation is related to the production and consumption of commodities, and thus,
economic activity generates firms’ waste by the input used in production and households’ waste
by households’ use of outputs. The waste intensities relating waste generation to economic activity
were derived from Swedish national waste statistics for the year 2008 [50,63]. Since firms are assumed
to be cost minimizing in the choice of labor, capital, energy, transports and materials for producing
outputs, the substitutions between these inputs and productivity changes in the use of the inputs affect
waste generation. Households’ waste generation is affected by the consumption of goods and services.
Waste management is not represented as a single sector, but its activities are split between the sectors
“Water and sewage” and “Services”.

3.2. The Waste Management Model NatWaste

The bottom-up model, NatWaste (National Waste management), is a systems engineering model
for strategic planning of national waste management systems [40]. It has been used to assess, for
instance, the introduction of a landfill tax and landfilling bans in Sweden (ibid.) and goals for biological
treatment and material recycling [64].

Based on cost optimization, NatWaste calculates the cost-effective mix of waste management
processes (Figure 2) for a given quantity of waste. The cost-effective mix is the set of processes
that gives the lowest total net economic costs, excluding external environmental costs and private
consumer time, with respect to the conditions defined. These include the collection, transportation and
treatment options available for each included waste category (Table A4). Costs include variable costs
for collection, local and regional transportation and treatment of waste, auxiliary energy and materials,
annualized investment costs for new or expanded process capacity and revenues for recovered material
and energy. Capital costs for investments already made are not included, but treated as sunk costs.
Results from NatWaste specify the cost-effective mix of waste management processes, in terms of
waste quantities processed and resources recovered by each process

NatWaste models waste categories of a certain quantity and composition from industry and
households from the point where it is collected from the first generator (Figure 2). Waste is then treated
in the system, usually in a sequence of different processes. Resources exit the system exit as recovered
materials (e.g., scrap metal, glass, different plastics), fertilizer (compost and digestate) and energy
(electrical power, heat and biogas) to be absorbed by the markets. Auxiliary electricity and vehicle
fuels are supplied for running the system.

Swedish waste management is modelled as a number of coupled generalized municipal waste
management systems [40]. Each generalized system reflects different characteristics, such as the size of
the municipality and access to a district heating system. Every Swedish municipality is allocated to



Sustainability 2016, 8, 411 5 of 21

one such generalized system, so that the sum of generalized municipal systems represents the national
system. In total, 49 waste categories from industry and households are modelled (Tables A1 and A3),
including all non-hazardous waste categories generated in Sweden, except waste from the mining
industry, waste considered as biofuel and other wastes that were considered not to be affected by the
policy instruments to be assessed in TOSUWAMA.
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management (NatWaste).

3.3. The LCA Waste Management Model SWEA

The bottom-up model SWEA was developed for life cycle assessments of potential environmental
impacts of waste management and waste prevention in Sweden [65]. It builds on previous work [36],
utilizing Life Cycle Inventory (LCI) data, in which processes are represented by inputs and outputs of
material and energy flows of unit processes, from existing models, databases and earlier studies of
waste management processes, such as collection, treatment and recycling of waste.

SWEA can be represented as consisting of a foreground system, corresponding to the WMS in
NatWaste, and a background system. The foreground system includes collection, transportation,
separation and treatment of the different waste categories, while the background system includes
process models of the production of fuels, electricity and materials used by the foreground system
(Figure 3). In line with established LCA methodology for waste management [66,67], credit is given
to the recovery of resources from waste in the foreground system through system expansion and
modelling of the avoided processes. In comparative assessments of scenarios where waste quantities
remain constant, waste generation is excluded from the model. In analyses of waste prevention
measures, the avoided burden of manufacturing and the use of products corresponding to the reduced
waste amounts are calculated.

SWEA includes the same 49 waste categories from industry and households and waste process
options as NatWaste (Tables A1, A3 and A4). LCI data for thermal and biological waste treatment,
landfill disposal and recycling of inert waste was generated by the ORWARE (Organic Waste Research)
model [68]. Additional LCI data on recycling were provided from Swedish datasets [65] or EcoInvent.
LCI data on the background system and avoided processes (such as materials from virgin resources,
energy supply, vehicle fuels and chemical fertilizer) were taken from the database EcoInvent 2.0
(Ecoinvent Centre, Dübendrof, Switzerland) [69]. The potential environmental impacts of emissions to
and resources from the environment can be assessed by using Life Cycle Impact Assessment (LCIA)
methods, such as the ReCiPe method [70] (Table A5).



Sustainability 2016, 8, 411 6 of 21Sustainability 2016, 8, 411  6 of 21 

 

Figure  3.  Conceptual  model  of  the  waste  management  system  modelled  in  Swedish  Waste 

management Environmental Assessment (SWEA). 

3.4. Linking of the Models 

The analysis  starts by  establishing a base year  solution  in both EMEC and NatWaste, using 

official  statistics  on  the  economy  and  waste  (in  TOSUWAMA,  the  year  2006).  Then,  scenario 

assumptions  for  exogenous  variables  in  EMEC  (Figure  4)  are  used  for  solving  the  model´s 

endogenous variables for a future year (in TOSUWAMA, the year 2030). The solution for endogenous 

variables, such as the waste quantities generated (Tables A1 and A2) in included sectors (Table A3) 

and  the price  changes  of  raw materials,  energy,  transport  and  labor used  or produced  in waste 

management  compared  to  the  base  year  are  transferred  to NatWaste  (Figure  4). NatWaste  then 

calculates  the  cost‐effective process mix  for managing  the new waste  amounts  and  the  resulting 

marginal  costs  for  each waste  category  and  sector  (Tables A1  and A3).  The marginal  costs  are 

transferred  back  to  EMEC,  in which  they  are  handled  as  prices  of waste management  services   

(Figure 4), so that EMEC can calculate how firms and households react to the price change of waste 

management services. After the iterations between EMEC and NatWaste, described in more detail   

in [61], the cost‐effective process mix for waste management and waste amounts are transferred from 

NatWaste  to SWEA  (Figure 4). This means  that  the results  from NatWaste determine what waste 

category amounts will be handled by what process models in SWEA. Potential environmental impact 

is then calculated based on the resulting resource use and emissions calculated by SWEA (Figure 4 

and Table A5). Note that while physical flows (material and energy) within, to and from the waste 

management system are the basis for modelling in NatWaste and SWEA, EMEC models economic 

relations in the Swedish economy, including all industrial sectors, the public sector and households. 
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3.4. Linking of the Models

The analysis starts by establishing a base year solution in both EMEC and NatWaste, using official
statistics on the economy and waste (in TOSUWAMA, the year 2006). Then, scenario assumptions for
exogenous variables in EMEC (Figure 4) are used for solving the model´s endogenous variables for a
future year (in TOSUWAMA, the year 2030). The solution for endogenous variables, such as the waste
quantities generated (Tables A1 and A2) in included sectors (Table A3) and the price changes of raw
materials, energy, transport and labor used or produced in waste management compared to the base
year are transferred to NatWaste (Figure 4). NatWaste then calculates the cost-effective process mix for
managing the new waste amounts and the resulting marginal costs for each waste category and sector
(Tables A1 and A3). The marginal costs are transferred back to EMEC, in which they are handled as
prices of waste management services (Figure 4), so that EMEC can calculate how firms and households
react to the price change of waste management services. After the iterations between EMEC and
NatWaste, described in more detail in [61], the cost-effective process mix for waste management and
waste amounts are transferred from NatWaste to SWEA (Figure 4). This means that the results from
NatWaste determine what waste category amounts will be handled by what process models in SWEA.
Potential environmental impact is then calculated based on the resulting resource use and emissions
calculated by SWEA (Figure 4 and Table A5). Note that while physical flows (material and energy)
within, to and from the waste management system are the basis for modelling in NatWaste and SWEA,
EMEC models economic relations in the Swedish economy, including all industrial sectors, the public
sector and households.



Sustainability 2016, 8, 411 7 of 21
Sustainability 2016, 8, 411  7 of 21 

 

Figure  4.  Linking  of  the models,  including main  data  flows  and  input  data.  LCIA,  Life  Cycle   

Impact Assessment. 

The primary results from the linked models are: (1) the waste amounts generated by category 

and sector (Tables A1–A3); (2) the cost‐effective process mix for managing this waste (Table A4); and 

(3) its potential environmental impacts (Table A5). It is also possible to obtain results for recovered 

resources  in terms of energy recovery (amounts of electricity, heat and biogas), material recycling 

(amounts of recycled materials) and biological treatment (amount of organic fertilizer). In addition, 

structural changes in the Swedish economy can be obtained. 

Data transfer between the three models is achieved by means of a “soft link” set up, meaning 

that numerical data are transferred manually between the models. No manual translation of data is 

required, since the models are harmonized in terms of parameter terminology for waste categories, 

generating sectors and management processes. NatWaste and SWEA share  the scope and  level of 

detail in the representation of waste categories and technical waste management options, and both 

use physical flows (material and energy) as a basis for modelling. Where NatWaste considers costs 

and revenues  linked  to processing physical flows  to,  from and within waste management, SWEA 

considers how the same processing of physical flows links up to generated or avoided environmental 

impacts. EMEC models economic relations in the Swedish economy, including all industrial sectors, 

the  public  sector  and  households.  The  waste  categories modelled  in  EMEC  correspond  to  the 

European Waste Catalogue for Statistics(EWC‐Stat) waste categories in the European Waste Statistics 

Directive  [71]. Many  of  these  categories,  however,  are  too  aggregated  to  be  used  for modelling 

impacts at the process level performed with NatWaste and SWEA. Therefore, most waste categories 

Figure 4. Linking of the models, including main data flows and input data. LCIA, Life Cycle
Impact Assessment.

The primary results from the linked models are: (1) the waste amounts generated by category and
sector (Tables A1–3); (2) the cost-effective process mix for managing this waste (Table A4); and (3) its
potential environmental impacts (Table A5). It is also possible to obtain results for recovered resources
in terms of energy recovery (amounts of electricity, heat and biogas), material recycling (amounts
of recycled materials) and biological treatment (amount of organic fertilizer). In addition, structural
changes in the Swedish economy can be obtained.

Data transfer between the three models is achieved by means of a “soft link” set up, meaning
that numerical data are transferred manually between the models. No manual translation of data is
required, since the models are harmonized in terms of parameter terminology for waste categories,
generating sectors and management processes. NatWaste and SWEA share the scope and level of
detail in the representation of waste categories and technical waste management options, and both use
physical flows (material and energy) as a basis for modelling. Where NatWaste considers costs and
revenues linked to processing physical flows to, from and within waste management, SWEA considers
how the same processing of physical flows links up to generated or avoided environmental impacts.
EMEC models economic relations in the Swedish economy, including all industrial sectors, the public
sector and households. The waste categories modelled in EMEC correspond to the European Waste
Catalogue for Statistics(EWC-Stat) waste categories in the European Waste Statistics Directive [71].
Many of these categories, however, are too aggregated to be used for modelling impacts at the process
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level performed with NatWaste and SWEA. Therefore, most waste categories were disaggregated
further in several material- or product-based subcategories when modelled in NatWaste and SWEA [61]
(Table A1).

After establishing a common reference solution for the chosen scenario year, the assessment of
policy instruments is performed by introducing them in EMEC, if for waste prevention, or in NatWaste,
if for waste management (Figure 4). The same iterative and sequential procedure as described above is
performed, and finally, the solutions are compared to that of the reference solution. This procedure
can be performed under varying future external scenarios, which are described in some detail in
the following section. As an illustration, the assessment of the policy instrument Differentiated
value-added tax (VAT) is also briefly described.

3.5. Assessment of Policy Instruments in Scenarios

The main purpose of developing the set of linked models was to assess waste policy instruments
in TOSUWAMA. Policy instruments were chosen and detailed during the course of the program in
parallel with the model development [72]. First, policy instruments were suggested by stakeholders or
identified in the literature. Then, 14 instruments were chosen as interesting candidates for assessment
and described in some detail (Table 1). The main goals of the instruments differ: 1–8 direct waste
management in a more sustainable direction; 9–13 prevent the generation and hazardousness of
waste; and 14 combines both goals. The set of linked models is primarily suited for analyzing
easily-quantifiable policy instruments, and after a first examination, Instruments 1–3 and 9–11 were
chosen for assessment with the set of linked models. Although suitable for the set of linked models,
Instruments 4 and 5 were instead assessed by literature studies, while Instrument 12 could not be
assessed because of a lack of data (see Section 4.5). Other assessments in TOSUWAMA dealt with
instruments 3, 6–8, 13 and 14 [14].

Table 1. Waste policy instruments selected for assessment in Towards Sustainable Waste Management
(TOSUWAMA). x indicates assessed and (x) indicates that assessment would be suitable, but was not
performed in TOSUWAMA.

Waste Policy Instrument Set of Linked Models Other Assessments
in TOSUWAMA

1 Climate tax on waste incineration x

2 Inclusion of waste in the system of green
certificates for electricity production x

3 Weight-based waste collection fee x x

4 Weight-based tax on incineration of waste (x) x

5 Compulsory recycling of recyclable materials (x) x

6 Environmentally-differentiated waste
collection fee x

7 Developed recycling systems x

8 Tradable certificates for use
of recycled material x

9 Tax on virgin raw materials x

10 Advertisements on request only x

11 Differentiated VAT (lower VAT on services
than on goods) x

12 Tax on hazardous substances (x)

13 Mandatory labelling of goods containing
hazardous substances x

14 Information to households and enterprises x
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To explore the robustness of policy instruments, assessments were made with reference to different
future developments, illustrated in scenarios for the year 2030 [62,73,74]. Besides a reference scenario
assuming developments in accordance with official forecasts made in 2008, four scenarios were set up
(Table 2).

Table 2. Future scenarios [62,73,74].

Scenario Market Development Political Governance of the Environment

Reference Business as usual Business as usual
Global sustainability Globalization Strong

Global markets Globalization Weak
Regional markets Regionalization Weak

European sustainability Regionalization Strong

The scenarios, designed to explore possible, but very different future developments of society,
were initially qualitatively described. For assessment with the set of linked models, scenarios were
translated into quantifications, where key assumptions concerned Gross Domestic Product (GDP),
world trade, primary product prices, oil prices, employment, carbon permit price, waste intensities
and energy system performance (Figure 4). The scenarios were implemented in EMEC and then
transferred to NatWaste through the relative price changes calculated by EMEC. The price changes in
each scenario were used for recalculating the level of unit costs and revenues for waste management in
NatWaste, such as treatment and transportation costs and material and energy revenues. This ensured
a consistent implementation of scenarios between the two models. SWEA implemented the scenarios
in two ways, both through results on waste generation transferred via NatWaste, and assumptions on
heat and electricity mixes in the energy system.

To illustrate the use of the set of linked models, the assessment of the policy instrument
Differentiated VAT is briefly described [14]. A reduction of the VAT on households’ service
consumption (excluding transportation), from current levels of 25% or 12% to 6%, could shift
consumption from goods to services and thereby reduce waste generation and environmental impacts.
The assessment of one of the two studied alternatives to finance such a tax cut, by decreasing
government transfers to households, is presented.

As a first step, the EMEC model calculated an increase in service consumption by 3.6%, compared
to a case without the policy instrument. It was observed that while consumption of goods fell,
households’ total consumption expenditures were almost unchanged. Investments fell marginally as
did imports and exports. GDP decreased by 0.1%. As a result, there was also a decrease in households’
waste generation by about 1% (corresponding to 125 ktons).

The waste amounts generated (per category and sector) for the cases with and without the
policy instrument were transferred from EMEC to NatWaste. Based on this, NatWaste calculated the
cost-effective process mix for managing the waste. The introduction of the Differentiated VAT only
affected the amount of generated waste, but not the waste management system itself (in terms of costs,
revenues or performance parameters). Thus, results only differed between the two cases in terms of
waste amounts processed, while the optimal mix of waste management processes remained the same.

Finally, the waste amounts and optimal mix of waste management processes were transferred
from NatWaste to SWEA. Based on this, SWEA calculated potential environmental impacts from waste
management with and without the policy instrument (Table 3). “Waste management system” impacts
are in the majority of categories negative since avoided burdens resulting from, e.g., recycled materials
and recovered energy, are larger than direct impacts (see Section 3.3).

For most impact categories, the net result from waste management was hardly affected by
the policy instrument. This can be explained by the fact that the indirect avoided burdens also
decreased when waste amounts decreased. SWEA also calculated reduced impacts from production
resulting from waste prevention, “avoided material production”, corresponding to the 1% reduction of
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households’ waste generation. When taken into account, net potential environmental impacts were
reduced by up to 7% with the policy instrument. Marine eutrophication was an exception because
of a relatively small contribution to this impact category from waste management itself, but a heavy
dependence on emission from beef production, which was reduced as a result of the waste prevention
calculated by EMEC. The results were similar in all scenarios studied (Table 2).

Table 3. Potential environmental impacts with and without Differentiated VAT.

Impact
Category Units

No Policy Differentiated VAT

Net DifferenceWaste
Management

System

Waste
Management

System

Avoided
Material

Production
Total Impact

Climate change kg CO2 eq ´2.53 ˆ 109 ´2.52 ˆ 109 ´1.45 ˆ 108 ´2.67 ˆ 109 1.34 ˆ 108

Ozone depletion kg CFC-11 eq ´1.22 ˆ 103 ´1.22 ˆ 103 ´3.11 ˆ 101 ´1.25 ˆ 103 2.36 ˆ 101

Human toxicity kg 1,4-DB eq ´1.61 ˆ 109 ´1.59 ˆ 109 ´5.09 ˆ 107 ´1.64 ˆ 109 3.94 ˆ 107

Photochemical
oxidant

formation
kg NMVOC ´2.18 ˆ 107 ´2.16 ˆ 107 ´5.56 ˆ 105 ´2.22 ˆ 107 4.28 ˆ 105

Particulate
matter

formation
kg PM10 eq 1.43 ˆ 108 1.42 ˆ 108 ´3.34 ˆ 105 1.42 ˆ 108 8.76 ˆ 105

Ionizing
radiation kg U235 eq ´5.78 ˆ 109 ´5.75 ˆ 109 ´3.32 ˆ 107 ´5.79 ˆ 109 3.82 ˆ 106

Terrestrial
acidification kg SO2 eq ´2.30 ˆ 107 ´2.29 ˆ 107 ´1.00 ˆ 106 ´2.39 ˆ 107 8.65 ˆ 105

Freshwater
eutrophication kg P eq 3.68 ˆ 106 3.68 ˆ 106 ´4.22 ˆ 104 3.64 ˆ 106 4.83 ˆ 104

Marine
eutrophication kg N eq ´3.98 ˆ 105 ´3.96 ˆ 105 ´4.86 ˆ 105 ´8.82 ˆ 105 4.84 ˆ 105

Terrestrial
ecotoxicity kg 1,4-DB eq ´5.79 ˆ 106 ´5.75 ˆ 106 ´9.30 ˆ 104 ´5.85 ˆ 106 5.52 ˆ 104

Freshwater
ecotoxicity kg 1,4-DB eq 1.35 ˆ 108 1.35 ˆ 108 ´1.36 ˆ 106 1.34 ˆ 108 1.29 ˆ 106

Marine
ecotoxicity kg 1,4-DB eq 1.03 ˆ 108 1.03 ˆ 108 ´1.23 ˆ 106 1.02 ˆ 108 1.11 ˆ 106

Agricultural
land occupation m2a ´9.35 ˆ 109 ´9.28 ˆ 109 ´2.01 ˆ 108 ´9.48 ˆ 109 1.26 ˆ 108

Urban land
occupation m2a ´1.81 ˆ 108 ´1.79 ˆ 108 ´2.94 ˆ 106 ´1.82 ˆ 108 1.60 ˆ 106

Natural land
transformation m2 ´3.53 ˆ 106 ´3.51 ˆ 106 ´2.86 ˆ 104 ´3.54 ˆ 106 1.44 ˆ 104

Water depletion m3 ´8.36 ˆ 107 ´8.31 ˆ 107 ´6.13 ˆ 106 ´8.92 ˆ 107 5.65 ˆ 106

Metal depletion kg Fe eq ´7.49 ˆ 109 ´7.45 ˆ 109 ´6.29 ˆ 107 ´7.52 ˆ 109 2.35 ˆ 107

Fossil depletion kg oil eq ´1.85 ˆ 109 ´1.84 ˆ 109 ´4.53 ˆ 107 ´1.89 ˆ 109 3.52 ˆ 107

It was concluded that the studied alternative of Differentiated VAT may reduce environmental
impacts without significantly impacting the economy as a whole. However, the relatively limited
reduction of environmental impacts points to larger differentiation of VAT levels or combinations
with other instruments for incentivizing larger reductions. Such options were however not assessed
within TOSUWAMA.

4. Discussion

Based on experiences from developing and using the set of linked models in TOSUWAMA, the
discussion aims at identifying and discussing its strengths and limitations.

4.1. The Governing Purpose

When constructing a model, the modeler must choose how to simplify reality with respect to
a number of considerations. What real-world problem is the modelling intended to shed light on?
What parts of the real world need to be represented in the model, and what can be left outside? What
causal relationships should the model capture and how? What level of detail is required for describing



Sustainability 2016, 8, 411 11 of 21

causal relationships? Central to these choices is the intended purpose of the model. As stressed by [13],
fitness for the purpose is crucial for the validity of hard-systems models. In our case, the overarching
purpose is to provide information that enables decision-makers to reflect on decisions of waste policy
design before implementation. This intended purpose governed the choices made when developing
the set of linked models.

4.2. Scope and Level of Detail

Guided by the intended purpose, the modeler decides on the trade-off between scope and
detail [75]. The broader the scope of a model, the more aggregated, and thus, generalized, the level of
the analysis and vice versa. If no trade-offs were made, the model complexity would be so large that
the modeler would not be in control. In the case of TOSUWAMA, the intended purpose of assessing
a broad range of waste policy instruments requires both a large scope and significant level of detail.
The set of models soft-links one top-down and two bottom-up models to capture a large scope and a
large amount of detail and to allow for assessment within one harmonized framework. At the same
time, the flexibility of using each model separately remains. Since all build on existing peer-reviewed
models, significant benefits and initial quality assurance to the efforts can be reaped [76]. However,
considerable efforts involving several modelers and analysts of various disciplines were still needed.
Extensive communication was required to make sure that all approaches were sufficiently understood
by all participants involved, so that linking and subsequent analyses could be correctly performed.
The full resources allocated for developing and assessing policy instruments with the set of linked
models in TOSUWAMA amounted to 900 kEuros and involved around ten people over a period of
six years.

There are three alternative modelling approaches to soft-linking. One is to develop a single model
of limited scope, the second to use a toolbox of separate models of complementary scope and the third
to develop a fully-integrated model covering the whole system in focus and the same aspects modelled
as in the soft-linked models.

A clear advantage of a single model approach is that there is more likely a number of existing
models to use, so that model development resources could be saved or spent on data collection
and analysis instead. Furthermore, one modeler could be in control of the full analysis. However,
the single model approach would cover a limited part of the system in focus, and fewer aspects
would be modelled. In the TOSUWAMA case, it would only be possible to assess instruments for
economic aspects and limited environmental impacts, either for waste prevention (EMEC), or for waste
management (NatWaste), or for comprehensive environmental impacts of both waste prevention and
management (SWEA). Not only would a single model limit the range of policy instruments, it would
also require a number of assumptions to be made exogenously about, e.g., waste generation and prices
of waste disposal services.

Existing models and assessment methods can be collected in a toolbox and used in parallel to
model and analyze different aspects or parts of the system in focus. This approach has been used
to, for example, assess possible future European resource policies in the EU 7th Framework project
Dynamix [77]. The toolbox approach does not suffer from the limited scope of a single model. In
fact, the total scope can easily be expanded beyond the scope of a limited set of soft-linked models.
However, in contrast to soft-linking, the toolbox approach does not allow for modelling the links
between the systems, system levels or aspects covered by each separate model. In addition, the results
from the different models can be difficult to compare. This makes the synthesis more difficult and
possibly more subjective, compared to an analysis with a set of soft-linked models.

A fully-integrated model covering the whole system in focus and the same aspects modelled as
the set of linked models does not exist for waste policy assessments to our knowledge. Its development
would require considerable resources, both in terms of expertise and time, but could, on the other
hand, offer significant benefits of control and productivity when put into use. The drawbacks of a
single large model may include a loss of transparency, which reduces what can be learned from the
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modelling [76]. The complexity of such a model can make it difficult to validate it and to explain
the results it produces. In practice, fully-integrated models often opt for a simplified modelling of
either macroeconomic or technologies in order to be of a manageable complexity, as can be noted in,
e.g., energy-economy analysis [78].

4.3. Harmonization of Models

The set of soft-linked models needed to be harmonized to ensure consistency in terminology,
common model parameters and data and implementation of policy instruments and scenarios. Because
of the large number of data transferred between the models, it was also important that these data
could be exchanged without manual translation. Overall, the harmonization of NatWaste and SWEA
was straightforward, while in some respects more challenging with EMEC. This is not surprising,
because the scope and detail of NatWaste and SWEA are similar, but very different from those of
EMEC (see Section 3).

The more aggregated level of EMEC needed to be consistently matched with the more
disaggregated level in NatWaste and SWEA. One such case was the description of waste categories.
While EMEC works with the aggregated waste categories of European waste statistics, these are too
aggregated for a meaningful analysis in NatWaste and SWEA (see Section 3 and Table A1). Although
one of the most time-consuming tasks in the development of the set of models, it was possible to collect
data to disaggregate waste categories for the needs of NatWaste and SWEA and to establish a smooth
exchange of data on waste flows between the three models.

Resolving the different aggregate levels in the description of virgin and recovered materials and
energy could, however, not be prioritized within the scope of TOSUWAMA and had thus to be treated
as a limitation when assessing policy instruments. Recovered materials and energy from waste are
beneficial outputs from the waste-management system and are modelled and thus possible to capture
in assessments with NatWaste and SWEA. EMEC, however, does not distinguish between virgin and
secondary materials and also not between biofuels and energy from waste. This means that the value
of recovered resources in the overall economy cannot be separated from that of virgin ones by the set
of models.

Another issue regards the harmonization of scopes. The economy-wide scope of EMEC includes
all industrial sectors and households. Waste management activities are part of the EMEC sectors
“Water and sewage” and “Services”, which means the scope of EMEC overlaps the ones of NatWaste
and SWEA. Ideally, soft-linking should control and include corrections for overlaps [76]. However,
such control requires significant efforts to accomplish, which could not be prioritized. This means that
although there is feedback between NatWaste and EMEC through the price of waste disposal services,
there is no feedback directly to the structure of the two sectors “Water and sewage” and “Services”.

In short, soft-linking captures the impact of the price of waste disposal services in the whole
economy (in the feedback from NatWaste to EMEC), the waste quantities and the economy’s overall
relative price changes (in the feedback from EMEC to NatWaste), but no other economic feedbacks.
This can be argued as being a reasonable prioritization for the intended purpose of TOSUWAMA
as long as the scale of recovered materials and energy from waste compared to virgin materials and
energy biofuels, and the scale of waste management compared to industrial sectors, are small and
not likely to significantly impact the economy-wide equilibrium. However, if more radical changes
in material recycling and other ways of closing material loops as major parts of the economy are to
be analyzed in other studies, a revision should be considered. For comparison, in energy-economy
analyses using soft-linked macro-economic models and energy systems engineering models, strict
procedures to control overlaps and feedbacks are used, since impacts may be significant (e.g., [76,79]).
Technical changes in the energy system may involve considerable feedbacks to the rest of the economy,
and conversely, major changes in the economy may impact the demand for energy and costs for energy
inputs to the energy system [76].
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4.4. Data Availability

Despite the advantage of using existing models and focusing only on modelling those system
aspects necessary for the intended purpose, significant work was needed to find and adapt new data,
both for harmonization between models and for complementing individual models. Certain parts
initially planned for had to be excluded owing to the lack of data.

Data could be collected so that EMEC covered all waste categories encompassed by European
waste statistics, except those outside the scope of TOSUWAMA (see Section 3). Data could also be
collected and generated so that NatWaste and SWEA covered all non-hazardous waste categories in
EMEC and their management. However, while generation of hazardous waste was modelled in EMEC,
available data about its treatment options was either incomplete or too specific to include in NatWaste
and SWEA (Table A2). Overall, there is a lack of system studies in both hazardous waste treatment and
hazardous content in material flows. The latter contributed to the difficulties in allocating hazardous
substances to materials in EMEC, which would have been needed for assessing the policy instrument
of a tax on hazardous substances (Instrument No. 12, Table 1).

Due to an almost complete lack of data, waste prevention by introducing a specific technology
in industrial production could not be included in EMEC as initially planned. In sum, four ways of
preventing waste were modelled in EMEC: (1) a general yearly autonomous efficiency improvement of
all activities in the economy; (2) substitution to less waste-generating inputs in production (substitution
between the inputs of material, energy, labor and capital); (3) reduction of waste-intensive production
in favor of less waste-intensive production; and (4) replacement in consumed goods and services
from waste-intensive to less waste-intensive, but more expensive ones. This limitation may result
in a somewhat underestimated impact of policy instruments on industrial waste prevention in
the assessments.

4.5. Policy Instruments

The set of linked models is primarily suited for analyzing easily quantifiable policy instruments.
In TOSUWAMA, these instruments were concerned with the introduction of taxes, fees, tradable
permits and bans, which, using the typology referred to by [80], belong to the three categories of using
markets, creating markets and environmental regulations. Instruments in the category engaging the
public (information disclosure, public participation and voluntary agreements) are not suitable and
would require other types of assessments.

Nevertheless, for a couple of otherwise quantifiable policy instruments, there were model
limitations that required additional assumptions to be made. These concerned, for example, the
value of recovering energy from waste in relation to other energy conversion options. When assessing
policy instruments connected to biogas production and heat and electricity generation, energy system
models could be useful for better capturing of the systemic conditions of such options.

EMEC and NatWaste both assess the economic effect of instruments, whereafter SWEA assesses
the environmental consequences. This is a limitation since instruments may not only impact on strict
economic grounds. For example, it has been empirically observed that a weight-based fee for the
collection of household waste (Instrument 3, Table 1) may lead to a mix of waste prevention, increased
source separation and illegal waste dumping, indicating different and other than pure cost-efficient
responses among households to the instrument [81]. In TOSUWAMA, the level and mix between these
three outcomes were assumed exogenously and then assessed with NatWaste and SWEA.

Other means for managing material flows in society, such as product life extension, re-use and
remanufacturing, may be part of waste policy or, rather, resource-efficiency policy. The set of linked
models is not particularly suited to analyzing such instruments, because of the aggregated level of
material flows, as modelled in EMEC, and because NatWaste and SWEA focus on modelling the
management of waste already generated. Further development of the set would then be needed or
other approaches would have to be considered.
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5. Conclusions

The need for policy instruments supporting a transition from mere end-of-pipe solutions to
resource management has been recognized in European policy. If such instruments are to be introduced,
they need to be carefully designed and assessed before implementation in order to promote the
desired changes and avoid problem shifting. Ex ante assessments using mathematical models, as
presented in this paper, may assist decision-makers designing policy instruments. Three existing
models were soft-linked for assessing policy instruments for both the prevention and management of
waste within one harmonized framework. The set of linked models is primarily suited for analyzing
easily-quantifiable policy instruments, such as bans, taxes and fees. Several such instruments were
assessed and contributed to the synthesis of TOSUWAMA [14].

Neither the wide range of waste policy instruments nor the scope of their potential impacts would
have been possible to assess if only one of the three models had been used. However, considerable
resources were needed for adapting, soft-linking and using the models. Full integration into a single
model would probably have involved significantly more resources in time and multidisciplinary
expertise to develop and might have resulted in reductions in the complexity captured, but may, on
the other hand, require fewer analysts once in place. On the other hand, considering the breadth of
the issues addressed and the many perspectives involved, it may be an advantage to use soft-linked
models: a broad group of analysts brought to the table may enrich the work, from the design of the
study through development and use of tools to the assessment and interpretation of results. However,
time and good communications are essential to obtaining benefits from such diversity.

There are clear limits as to what this specific modelling approach, and indeed any such approaches,
can address and also to the extent to which they meet the needs of decision-makers. It has been noted
that despite a strong research interest in developing and conducting formal modelling assessments,
they have not yet been extensively used for supporting decision-making on policy [82,83]. However,
considering the growing needs of societal governance of material resources and possible requirements
for new, clever and robust policy initiatives, the usefulness of model assessments may increase. In this
perspective, soft-linked models may be a way forward, allowing many aspects to be addressed and
disciplines to contribute.
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Appendix

The Appendix contains further model specifications with the purpose of clarifying what data are
being transferred between the models and what results the set of linked models generates.

Table A1. Non-hazardous waste categories modelled in EMEC, NatWaste and SWEA and
corresponding EWC-Stat waste category codes [71].

Non-Hazardous Waste Categories

EWC-Stat Code EMEC NatWaste and SWEA

1.2, 1.4, 2, 3.1 Chemical wastes Chemical

3.2, 11, 11.3 Sludge
Industrial sludge organic

Industrial sludge non-organic
Sewage sludge
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Table A1. Cont.

Non-Hazardous Waste Categories

EWC-Stat Code EMEC NatWaste and SWEA

6 Metal wastes

Aluminum
Ferrous
Stainless

Other metal

7.1 Glass wastes Glass clear
Glass color

7.2 Paper wastes

Cardboard
Corrugated board

Newsprint
Office paper
Fiber reject

7.3 Rubber wastes Rubber

7.4 Plastic wastes

Polyethylene (PE)
Polypropylene

Polyethylene terephthalate
Polystyrene (PS)

Polyvinyl chloride (PVC)
Polyurethane
Polycarbonate

Agricultural film
Agricultural cans
Agricultural other

7.5 Wood wastes Wood

7.6 Textile wastes Textile

8 Discarded equipment Equipment

8.1 Discarded vehicles Not included

8.41 Batteries and accumulators Not included

9 Animal and vegetal wastes

Manure
Animal waste

Animal waste to be hygienized
Vegetal waste

Park waste
Foods waste

10.1 Household wastes

Household and similar waste
Foods
Park

Newsprint
Corrugated board

Cardboard
PE
PS

Glass clear
Glass color

Metals
Landfill residues
Hazardous waste

Equipment
Wood
Textile

Other combustible waste
Bulky waste

Paper
Plastics
Wood
Plaster

Inert mix

10.2 Mixed materials

Combustible wastes
Paper

Plastics
Wood

Non-combustible wastes
Plaster

Inert mix
Mixed wastes

Paper
Plastics
Wood
Plaster

Inert mix

10.3 Sorting residues Recycled fiber reject
Sorting ashes

12 Mineral wastes
Plaster

Inert mix
Asphalt

12.4 Combustion wastes

Steel industry slag, blast-furnace
Steel industry slag, other

Wood fly ash
Other ashes
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Table A2. Hazardous waste categories modelled in EMEC and corresponding EWC-Stat waste category
codes [71]. These categories were not included in NatWaste and SWEA.

Hazardous Waste Categories

EWC-Stat Code EMEC NatWaste and SWEA

1.1 Spent solvents Not included
1.3 Used oils Not included

1.2, 1.4, 2, 3.1 Chemical wastes Not included
3.2 Sludge Not included
6 Metal wastes Not included

7.1 Glass wastes Not included
7.5 Wood wastes Not included
7.7 PCB wastes Not included
8 Discarded equipment Not included

8.1 Discarded vehicles Not included
8.41 Batteries and accumulators Not included
10.2 Mixed materials Not included
10.3 Sorting residues Not included
12 Mineral wastes Not included

12.4 Combustion wastes Not included
12.6 Contaminated soils Not included

Table A3. Sectors modelled in EMEC, NatWaste and SWEA.

Sectors in EMEC Sectors in NatWaste and SWEA

Agriculture Industry
Fishery
Forestry
Mining

Other industries
Mineral products

Pulp and paper mills
Drug industries

Other chemical industries
Iron and steel industries

Non-iron metal industries
Engineering

Petroleum refineries
Electricity supply
Hot water supply
Gas distribution

Water and sewage
Construction

Railroad transports
Road goods transports

Road passenger transports
Sea transports
Air transports

Other transports
Services

Real estate
Public

Households Households
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Table A4. Waste processes modelled in NatWaste and SWEA.

Collection and Transport Options Waste Treatment Options

Curbside collection of organic and residual waste in separate bags Sorting biofuel heat boiler
Biofuel heat boiler

Curbside collection of organic and residual waste in separate bins Combined heat and power
Heat only boiler

Curbside collection of comingled waste Cement kiln

Curbside collection of fully-separated waste Anaerobic digestion

Fully-separated waste at local recycling station Window compost

Fully-separated waste at central recycling center regional transport Reactor compost
Material recycling

Landfill

Table A5. Potential environmental impacts indicators calculated by SWEA using the LCIA methods
ReCiPe Midpoint (H) v 1.06method [70] and cumulative energy demand [84].

ReCiPe Environmental Impact Indicators Cumulative Energy Demand Impact Indicators

Climate change Nonrenewable, fossil
Ozone depletion Non-renewable, nuclear
Human toxicity Renewable, biomass

Photochemical oxidant formation Renewable, wind, solar, geothermal
Particulate matter formation Renewable, water

Ionizing radiation
Terrestrial acidification

Freshwater eutrophication
Marine eutrophication
Terrestrial ecotoxicity
Freshwater ecotoxicity

Marine ecotoxicity
Agricultural land occupation

Urban land occupation
Natural land transformation

Water depletion
Metal depletion
Fossil depletion
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