118 research outputs found

    Equilibrium, kinetics and breakthrough curves of acetaminophen adsorption onto activated carbons from microwave-assisted FeCl3-activation of lignin

    Full text link
    Activated carbons have been prepared by chemical activation of lignin with FeCl3 using microwave (MW) heating. The use of MW significantly reduced the activation time compared to conventional heating. Microwave power, impregnation ratio (R: mass ratio of FeCl3 to lignin precursor) and MW holding time have been studied as variables affecting the development of porous texture. The optimum conditions were found at 800 W, R = 5 and 30 min MW heating time. Under those conditions an essentially microporous activated carbon was obtained, with BET surface area higher than 1150 m2·g−1 and acidic surface, whose pH at the point of zero charge was 4.2. This activated carbon was tested for the adsorption of acetaminophen, as model emerging contaminant, from aqueous phase. The adsorption isotherms, obtained at 20, 40 and 60 °C, fitted well to Redlich–Peterson model. The maximum acetaminophen adsorption reached about 300 mg·g−1 at 60 °C. Values of 35.5 kJ·mol−1 and 238.3 J·mol−1·K−1 were obtained for the enthalpy and entropy of adsorption, respectively. Those positive values are indicative of an endothermic process and increased randomness at the solid/solution interface upon adsorption. The adsorption kinetics was better described by pseudo-second order driving force model. Breakthrough curves were also obtained at different adsorption temperatures, flow rates and acetaminophen inlet concentrations. They fitted well to a logistic-type equation representative of the Bohart-Adams, Thomas and Yoon-Nelson models. Adsorbent regeneration with hot water (80 °C) revealed easy and complete desorption thus providing a promising view of the potential application of this activated carbonThe authors acknowledge the financial support from the State Research Agency (PID2019-106186RB-I00/AEI/10.13039/501100011033, Spain). M. Penas-Garzón thanks Spanish MECD for FPU16/00576 gran

    Metronidazole photodegradation under solar light with UiO-66-NH2 photocatalyst: Mechanisms, pathway, and toxicity assessment

    Full text link
    Metronidazole is a nitroimidazole antibiotic that is increasingly detected in aquatic bodies. Therefore, there is an urgent need to research methodologies to remove this and other antibiotics. One of the alternatives is the application of solar photocatalysis, which requires the use of an efficient photocatalyst. In this work, UiO-66-NH2 was synthesized by a facile solvothermal method and evaluated for the degradation of metronidazole under simulated solar light. The effects of catalyst dosage, initial pH, and metronidazole concentration were discussed, establishing the best operation conditions. In addition, the stability and reproducibility of UiO-66-NH2 activity were also verified. The quenching reaction showed that holes and superoxide radicals coexisted as the main active species, being responsible for the metronidazole degradation. The pathway of metronidazole photodegradation was proposed by means of density functional theory calculations and LC/ESI-MS analysis. It is noteworthy that this study detected for the first time C6H11N3O4, C4H6N2O3, and C4H8N2O4 as metronidazole photodegradation byproducts. ECOSAR toxicity analysis showed that all byproducts were less toxic than the original metronidazole, supporting the potential feasibility of this method for treating water polluted with this antibioticThis work was supported by the National State Research Agency of Spain (project number: PID2019–106186RB-I00/AEI/10.13039/ 501100011033). Yilan Wang acknowledges the financial support provided by China Scholarship Council (CSC No. 201908610198). The authors sincerely acknowledged support from the external services of the Autonomous University of Madrid (SIdI

    Adsorption of emerging pollutants on lignin-based activated carbon: Analysis of adsorption mechanism via characterization, kinetics and equilibrium studies

    Full text link
    Lignin has been employed as a precursor to synthesize activated carbons with the aim of lignin-biomass revalorization. The properties of these activated carbons were compared, and the best adsorbent was employed to remove two emerging pollutants from water, acetaminophen and acetamiprid. The adsorption mechanisms of pharmaceutical and pesticide compounds were analyzed, modeled and interpreted via statistical physics models. In particular, adsorption kinetics and isotherms of acetaminophen and acetamiprid at temperatures between 20 and 60 ◦C were quantified experimentally. Equilibrium data were fitted to different statistical physics-based isotherm models to establish the corresponding adsorption mechanism. A double layer adsorption model with one type of functional group was the best to correlate and explain the removal of these organic molecules. Steric parameters for the adsorption of these organic compounds were also calculated thus determining that their adsorption was multi-molecular. At tested operating conditions, acetaminophen adsorption was endothermic, while acetamiprid removal was exothermic. Physical adsorption forces were expected to be responsible for the removal of both compounds. This study reports new insights on the adsorption mechanisms of relevant emerging pollutants commonly found in water worldwid

    Root Density in \u3cem\u3ePanicum maximum\u3c/em\u3e cv. Tanzania Monoculture and in a Mixture with \u3cem\u3eLeucaena leucocephala\u3c/em\u3e with Different Densities in Mexico

    Get PDF
    In Yucatan cattle production is limited by forage availability during the dry season. L. leucocephala has good nutritive value (24 - 30% CP) and can stand drought and grazing, therefore its use in mixture with grasses is recommended. However, in association both species could compete for light, water and nutrients. The aim of this study was to assess the effect of introduction of L. leucocephala with different densities on root density of P. maximum

    Influence of Dietary Algae Meal on Lipid Oxidation and Volatile Profile of Meat from Lambs with Competent Reticular Groove Reflex

    Get PDF
    Dietary lipid sources influence intramuscular fatty acid composition, which in turn may affect the volatile profile of meat. The aim of this work was to investigate the effects of marine algae supplementation (Aurantiochytrium limacinum) on volatile compounds of cooked lamb meat. Forty-eight lambs with 42 days of age were divided into three groups: lambs fed a conventional diet without algae meal supplementation (NOALG), lambs with competent reticular groove reflex (RGR) fed the same diet supplemented with 2.5% marine algae meal mixed in the concentrate (ALGCON), and lambs with competent RGR, receiving the same diet and fed with 2.5% marine algae meal in a milk replacer to bypass the rumen (ALGMILK). Lipid and protein oxidation in raw meat was assessed and volatile compounds in grilled meat were determined. The highest and lowest lipid oxidations were observed in the ALGMILK and NOALG groups, respectively. Protein oxidation was unaffected. Out of 56 identified compounds, 12 volatiles significantly increased in both algae groups and 6 of them exclusively in the ALGCON treatment. Algae meal supplementation and its form of administration, either protected or not from rumen degradation, are important factors to consider in lipid oxidation and the aromatic profile of lamb meat

    The Free-Fall time of finite Sheets and Filaments

    Full text link
    Molecular clouds often exhibit filamentary or sheet-like shapes. We compute the free-fall time (\tff) for finite, uniform, self-gravitating circular sheets and filamentary clouds of small but finite thickness, so that their volume density ρ\rho can still be defined. We find that, for thin sheets, the free-fall time is larger than that of a uniform sphere with the same volume density by a factor proportional to A\sqrt{A}, where the aspect ratio AA is given by A=R/hA=R/h, RR being the sheet's radius and hh is its thickness. For filamentary clouds, the aspect ratio is defined as A=L/\calR, where LL is the filament's half length and \calR is its (small) radius, and the modification factor is a more complicated, although in the limit of large AA it again reduces to nearly A\sqrt{A}. We propose that our result for filamentary shapes naturally explains the ubiquitous configuration of clumps fed by filaments observed in the densest structures of molecular clouds. Also, the longer free-fall times for non-spherical geometries in general may contribute towards partially alleviating the "star-formation conundrum", namely, that the star formation rate in the Galaxy appears to be proceeding in a timescale much larger than the total molecular mass in the Galaxy divided by its typical free-fall time. If molecular clouds are in general formed by thin sheets and long filaments, then their relevant free-fall time may have been systematically underestimated, possibly by factors of up to one order of magnitude.Comment: To appear on The Astrophysical Journa

    Los estudios de caso en psicoterapia: desafíos y posibilidades

    Get PDF
    Todo caso clínico es un reto. ¿Cómo debe ser abordado por el psicoterapeuta? Este libro abre las puertas del consultorio para examinar lo que ocurre en su interior, al tiempo que pone en el centro del análisis al psicoterapeuta y su ejercicio profesional. Fundamentales para comprender las peculiaridades y vicisitudes de la práctica psicoterapéutica, los casos clínicos son el eje principal de varias de las investigaciones que conforman este volumen, en el que los autores muestran las problemáticas y formas de intervención del psicoterapeuta en su interacción con el consultante. En el estudio de casos particulares, se describen una serie de nociones teóricas y epistémicas, así como la diversidad de formas para llevar a cabo y sistematizar el ejercicio profesional. El mosaico de temáticas, problemas y alternativas de intervención que se propone en estas páginas, facilitan la comprensión del perfil del psicoterapeuta y su papel en la práctica clínica, además de ampliar el conocimiento de esta disciplina tanto entre los profesionales como en aquellos lectores interesados en incursionar en las particularidades de esta especialidad

    Prognostic value of discharge heart rate in acute heart failure patients: more relevant in atrial fibrillation?

    Get PDF
    [Abstract] Aims. The prognostic impact of heart rate (HR) in acute heart failure (AHF) patients is not well known especially in atrial fibrillation (AF) patients. The aim of the study was to evaluate the impact of admission HR, discharge HR, HR difference (admission-discharge) in AHF patients with sinus rhythm (SR) or AF on long- term outcomes. Methods. We included 1398 patients consecutively admitted with AHF between October 2013 and December 2014 from a national multicentre, prospective registry. Logistic regression models were used to estimate the association between admission HR, discharge HR and HR difference and one- year all-cause mortality and HF readmission. Results. The mean age of the study population was 72 ± 12 years. Of these, 594 (42.4%) were female, 655 (77.8%) were hypertensive and 655 (46.8%) had diabetes. Among all included patients, 745 (53.2%) had sinus rhythm and 653 (46.7%) had atrial fibrillation. Only discharge HR was associated with one year all-cause mortality (Relative risk (RR) = 1.182, confidence interval (CI) 95% 1.024–1.366, p = 0.022) in SR. In AF patients discharge HR was associated with one year all cause mortality (RR = 1.276, CI 95% 1.115–1.459, p ≤ 0.001). We did not observe a prognostic effect of admission HR or HRD on long-term outcomes in both groups. This relationship is not dependent on left ventricular ejection fraction. Conclusions. In AHF patients lower discharge HR, neither the admission nor the difference, is associated with better long-term outcomes especially in AF patients

    Blue-space availability, environmental quality and amenity use across contrasting socioeconomic contexts

    Get PDF
    Over 60% of the global population are expected to live in urban areas by 2050. Urban blue spaces are critical for biodiversity, provide a range of ecosystem services, and can promote human health and wellbeing. Despite this, access to blue space is often unequally distributed across socioeconomic gradients, and the availability of quality blue space could extend to environmental justice issues. Three stages of analysis were carried out in Mexico City, Mexico and Bristol, UK to (i) assess associations between blue space and socioeconomic metrics at a regional scale, (ii) apply a rapid assessment tool to assess amenity, access and environmental quality, (iii) consider local quality across socioeconomic gradients at a regional scale. Still water availability was indicative of higher socioeconomic status, but contrasting city evolutions underpinned differences. Locally, there were environmental gradients from more complex to disturbed habitats that influenced potential wellbeing and amenity benefits. In combination, this may exacerbate inequalities and risk increasing ecosystem disservices. If cities are to be socially, and environmentally resilient to higher levels of disturbance in the future, healthy ecosystems will be key. However, further research is needed to address various dimensions of injustice in urban areas beyond blue space distribution

    BVRI Light Curves for 29 Type Ia Supernovae

    Get PDF
    BVRI light curves are presented for 27 Type Ia supernovae discovered during the course of the Calan/Tololo Survey and for two other SNe Ia observed during the same period. Estimates of the maximum light magnitudes in the B, V, and I bands and the initial decline rate parameter m15(B) are also given.Comment: 17 pages, figures and tables are not included (contact first author if needed), to appear in the Astronomical Journa
    corecore