204 research outputs found

    Impacts of meteoric sulfur in the Earth's atmosphere

    Get PDF
    A meteoric sulfur input function and a sulfur ion chemistry scheme have been incorporated into a chemistry-climate model, in order to study the speciation of sulfur between the stratosphere and the thermosphere (~20 – 120 km), and the impact of the sulfur input from ablation of cosmic dust. The simulations have been compared to rocket observations of SO+ between 85 and 110 km, MIPAS observations of SO2 between 20 and 45 km, and stratospheric balloon-borne measurements of H2SO4 vapor and sulfate aerosol. These observations constrain the present day global flux of meteoric sulfur to ≤ 1.0 t S d-1, i.e. 2 orders of magnitude smaller than the flux of S into the stratosphere from OCS photo-oxidation and explosive volcanic SO2 injection. However, the meteoric sulfur flux is strongly focused into the polar vortices by the meridional circulation, and therefore the contribution of SO2 of meteoric origin to the polar upper stratosphere during winter is substantial (~ 30% at 50 km for a flux of 1.0 t S d-1). The Antarctic spring sulfate aerosol layer is found to be very sensitive to a moderate increase of the input rate of meteoric sulfur, showing a factor of 2 enhancement in total sulfate aerosol number density at 30 km for an input of 3.0 t S d-1. The input rate estimate of 1.0 t S d-1 suggests an enrichment of sodium relative to sulfur of 2.7 ± 1.5 and is consistent with a total cosmic dust input rate of 44 t d-1

    Determination of the absorption cross sections of higher-order iodine oxides at 355 and 532 nm

    Get PDF
    Iodine oxides (IxOy) play an important role in the atmospheric chemistry of iodine. They are initiators of new particle formation events in the coastal and polar boundary layers and act as iodine reservoirs in tropospheric ozone-depleting chemical cycles. Despite the importance of the aforementioned processes, the photochemistry of these molecules has not been studied in detail previously. Here, we report the first determination of the absorption cross sections of IxOy, x=2, 3, 5, y=1–12 at λ=355 nm by combining pulsed laser photolysis of I2∕O3 gas mixtures in air with time-resolved photo-ionization time-of-flight mass spectrometry, using NO2 actinometry for signal calibration. The oxides selected for absorption cross-section determinations are those presenting the strongest signals in the mass spectra, where signals containing four iodine atoms are absent. The method is validated by measuring the absorption cross section of IO at 355 nm, σ355nm,IO=(1.2±0.1) ×10−18 cm2, which is found to be in good agreement with the most recent literature. The results obtained are σ355nm,I2O3<5×10−19 cm2 molec.−1, σ355nm,I2O4= (3.9±1.2)×10−18 cm2 molec.−1, σ355nm,I3O6= (6.1±1.6)×10−18 cm2 molec.−1, σ355nm,I3O7= (5.3±1.4)×10−18 cm2 molec.−1, and σ355nm,I5O12= (9.8±1.0)×10−18 cm2 molec.−1. Photodepletion at λ=532 nm was only observed for OIO, which enabled determination of upper limits for the absorption cross sections of IxOy at 532 nm using OIO as an actinometer. These measurements are supplemented with ab initio calculations of electronic spectra in order to estimate atmospheric photolysis rates J(IxOy). Our results confirm a high J(IxOy) scenario where IxOy is efficiently removed during daytime, implying enhanced iodine-driven ozone depletion and hindering iodine particle formation. Possible I2O3 and I2O4 photolysis products are discussed, including IO3, which may be a precursor to iodic acid (HIO3) in the presence of HO2

    A laboratory characterisation of inorganic iodine emissions from the sea surface: dependence on oceanic variables and parameterisation for global modelling

    Get PDF
    Reactive iodine compounds play a significant role in the atmospheric chemistry of the oceanic boundary layer by influencing the oxidising capacity through catalytically removing O3 and altering the HOx and NOx balance. The sea-to-air flux of iodine over the open ocean is therefore an important quantity in assessing these impacts on a global scale. This paper examines the effect of a number of relevant environmental parameters, including water temperature, salinity and organic compounds, on the magnitude of the HOI and I2 fluxes produced from the uptake of O3 and its reaction with iodide ions in aqueous solution. The results of these laboratory experiments and those reported previously (Carpenter et al., 2013), along with sea surface iodide concentrations measured or inferred from measurements of dissolved total iodine and iodate reported in the literature, were then used to produce parameterised expressions for the HOI and I2 fluxes as a function of wind speed, sea-surface temperature and O3. These expressions were used in the Tropospheric HAlogen chemistry MOdel (THAMO) to compare with MAX-DOAS measurements of iodine monoxide (IO) performed during the HaloCAST-P cruise in the eastern Pacific ocean (Mahajan et al., 2012). The modelled IO agrees reasonably with the field observations, although significant discrepancies are found during a period of low wind speeds (< 3 m s&minus;1), when the model overpredicts IO by up to a factor of 3. The inorganic iodine flux contributions to IO are found to be comparable to, or even greater than, the contribution of organo-iodine compounds and therefore its inclusion in atmospheric models is important to improve predictions of the influence of halogen chemistry in the marine boundary layer

    Mitocondrial COI and 16S rDNA sequences support morphological identification and biogeography of deep-sea red crabs of the genus Chaceon (Crustacea, Decapoda, Geryonidae) in the Eastern Central and South Atlantic Ocean

    Get PDF
    The geographical spreading of new fishing activities and the increasingly deeper locations of these activities have shown the worldwide distribution of gerionid crabs and new descriptions of Chaceon taxa. However, incomplete penetrance, variable expressivity, and phenotypic overlap make the morphometric identification of these species difficult. In this study, partial sequences of the cytochrome c oxidase subunit 1 (COI) and 16S mitochondrial ribosomal RNA (16S rRNA) genes have been analyzed in Chaceon species from the Eastern Central and South Atlantic and compared with sequences of species from Western Atlantic. Our results corroborate the proposed morphological species and highlight the significant separation of the Eastern Atlantic species and those from Atlantic coasts of South America for both markers (97% Bayesian posterior probability, BPP / 83% Bootstrap replicates, BT). Interestingly, Chaceon sanctaehelenae shows a closer relationship with the species of the American coast than with those from the Eastern Atlantic. On the other hand, while COI marker clearly separates Chaceon atopus and Chaceon erytheiae species (99 BPP / 91% BT), these species share haplotypes for the 16S rRNA marker, pointing to a recent speciation process. Moreover, a close relationship was observed between Chaceon maritae and Chaceon affinis (94% BPP / 77% BT). The topologies of the trees obtained indicate that the ancestor of this genus was closer related to those species from South America than to those from the Eastern Atlantic.Versión del edito

    Comment on “Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature” by W. Siebrand, Z. Smedarchina, E. Martínez-Núñez and A. Fernández-Ramos, Phys. Chem. Chem. Phys., 2016, 18, 22712

    Get PDF
    The article “Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature” proposes a dimer mediated mechanism in order to explain the large low temperature rate coefficients for the OH + methanol reaction measured by several groups. It is demonstrated here theoretically that under the conditions of these low temperature experiments, there are insufficient dimers formed for the proposed new mechanism to apply. Experimental evidence is also presented to show that dimerization of the methanol reagent does not influence the rate coefficients reported under the conditions of methanol concentration used for the kinetics studies. It is also emphasised that the low temperature experiments have been performed using both the Laval nozzle expansion and flow-tube methods, with good agreement found for the rate coefficients measured using these two distinct techniques

    Adenylate Cyclase Toxin Promotes Internalisation of Integrins and Raft Components and Decreases Macrophage Adhesion Capacity

    Get PDF
    Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT) that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin) family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis

    Mammalian Glutaminase Gls2 Gene Encodes Two Functional Alternative Transcripts by a Surrogate Promoter Usage Mechanism

    Get PDF
    Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene.We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA) and long (GAB) transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS) and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed.This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and LGA transcripts was species- and tissue-specific providing evidence of a differential regulation of GLS2 transcripts in mammals

    A nocturnal atmospheric loss of CH2I2 in the remote marine boundary layer.

    Get PDF
    Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10-13 cm3 molecule-1 s-1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10-13 cm3 molecule-1 s-1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/- 0.8 nmol m-2 d-1 for CH2I2 and 3.7 +/- 0.8 nmol m-2 d-1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2-4 × 10-13 cm3 molecule-1 s-1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.LJC acknowledges NERC (NE/J00619X/1) and the National Centre for Atmospheric Science (NCAS) for funding. The laboratory work was supported by the NERC React-SCI (NE/K005448/1) and RONOCO (NE/F005466/1) grants.This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s10874-015-9320-

    Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice

    Get PDF
    Background: Alzheimer’s disease (AD) brain shows an ongoing inflammatory condition and non-steroidal antiinflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and antiinflammatory agents with therapeutic potential. Methods: We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein (APP) mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the drinking water during 4 months) on inflammatory and cognitive parameters, and on 18F-fluoro-deoxyglucose (18FDG) uptake by positron emission tomography (PET). Results: Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased 18FDG uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-a mRNA expression found in the AD model. Increased cortical b-amyloid (Ab) levels were significantly reduced in the mouse model by both cannabinoids. Noteworthy both cannabinoids enhanced Ab transport across choroid plexus cells in vitro. Conclusions: In summary we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Ab clearanceThis work was supported by the Spanish Ministry of Science and Technology (SAF 2005-02845 to M.L.C). A.M.M-M. was recipient a fellowship from the Ministry of Education and Scienc
    corecore