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Abstract

The geographical spreading of new fishing activities and the increasingly deeper locations

of these activities have shown the worldwide distribution of gerionid crabs and new descrip-

tions of Chaceon taxa. However, incomplete penetrance, variable expressivity, and pheno-

typic overlap make the morphometric identification of these species difficult. In this study,

partial sequences of the cytochrome c oxidase subunit 1 (COI) and 16S mitochondrial ribo-

somal RNA (16S rRNA) genes have been analyzed in Chaceon species from the Eastern

Central and South Atlantic and compared with sequences of species from Western Atlantic.

Our results corroborate the proposed morphological species and highlight the significant

separation of the Eastern Atlantic species and those from Atlantic coasts of South America

for both markers (97% Bayesian posterior probability, BPP / 83% Bootstrap replicates, BT).

Interestingly, Chaceon sanctaehelenae shows a closer relationship with the species of the

American coast than with those from the Eastern Atlantic. On the other hand, while COI

marker clearly separates Chaceon atopus and Chaceon erytheiae species (99 BPP / 91%

BT), these species share haplotypes for the 16S rRNA marker, pointing to a recent specia-

tion process. Moreover, a close relationship was observed between Chaceon maritae and

Chaceon affinis (94% BPP / 77% BT). The topologies of the trees obtained indicate that the

ancestor of this genus was closer related to those species from South America than to those

from the Eastern Atlantic.
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Introduction

Morphological identification of species belonging to the Geryonidae family has been a difficult

task in the past for people studying deep-sea resources and marine biodiversity. Interspecific

similarities and intraspecific morphological variability have contributed to former and poten-

tial current misclassification [1]. Thus, other considerations such as the geographical site of

collections have also been an element used in the species identification, regarding previous

species citations in the same geographic zone [1, 2, 3].

Until the early eighties most species along the East Atlantic Ocean and also off the African

coast of the Indian Ocean were misidentified as Geryon quinquedens, now a species restricted

to the Northwest Atlantic. In 1981, Manning and Holthuis [2] described Geryon maritae as a

new species in the Atlantic coast of Africa. These authors reported that most records of Geryon
affinis or Geryon quinquedens from West Africa pertained to G. maritae.

Later, the geographical spreading of new exploratory fishing activities and associated stud-

ies, as well as the increasingly deeper locations of these fishing activities, provided new biologi-

cal material that showed the worldwide distribution of gerionids and new species descriptions.

Through this process, Manning and Holthuis [3] recorded three species of Geryon from South

West Africa-Namibia and South Africa: Geryon chuni, Geryon macphersoni and G. maritae.

Afterward, they faced the restructuration of the Geryonidae family moving most of the species

in the genus Geryon into a new genus, Chaceon and describing nine new species [1].

Thus, since the eighties the number of new descriptions of Chaceon genus has considerably

increased reaching the amount of 34 species [4]. However, genera of the Geryonidae family

and some species assignment to these genus have been in controversy up to now. Thus, Ng

et al. [5] listed 31 species of Chaceon where C. sanctaehelenae is dropped and Chaceon chuni
and Chaceon inghami are considering as Geryon chuni and Geryon inghami.

In some cases, the multigenic inheritance, the reduced penetrance and variable expressivity

of morphological traits, as well as the observer subjectivity could make the morphometric

identification difficult. In this context, where the presence of cryptic species has high possibil-

ity to occur, molecular analysis could shed light on morphological identification and biogeog-

raphy of the genus Chaceon.

In this sense, the use of 16S mitochondrial ribosomal RNA (16S rRNA) and cytochrome c

oxidase subunit 1 (COI) allowed reconstructing the initial phylogenies in crustacean [6, 7].

Specific studies on Chaceon species have been conducted by Weinberg and col. [8] in the

North Atlantic, and Mantelatto and col. [9] in the South West Atlantic. However, there are no

studies providing a broader vision of phylogenetic relationships among species of Chaceon
genus from Eastern Central and South Atlantic.

Therefore, the objective of this study is to review the morphology-based taxonomic classifi-

caton of deep-sea red crabs of the genus Chaceon using mitocondrial COI and 16S rRNA

sequences.

Material and methods

Forty-three samples of muscle tissue from individuals of deep-sea red crabs (Chaceon spp.)

were collected from different places in the Eastern Central and South Atlantic (Fig 1). Species

names assigned on morphological basis [1, 3, 10] and sampling areas are reported in Table 1.

The presence and potential geographic distribution of species of Chaceon genus in the Central

East and South Atlantic is shown in Fig 1. Five species of Chaceon were morphologically iden-

tified. C. erytheiae from Valdivia Bank was identified following Macpherson [10]. C. atopus [1]

and C. sanctaehelenae [1] specimens collected in the Vavilov Ridge (Gulf of Guinea) were

identified using Manning and Holthuis [1] description. Finally C. affinis [11] from the Canary
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Islands and Fantasma Bank (north Canary Islands) and C. maritae [2] from Western Sahara

waters were identified through Manning and Holthuis [2]. Also, nine samples of unidentified

specimens from Namibian Exclusive Economic Zone (EEZ) and the Walvis Ridge (Valdivia

Bank) were incorporated to the analysis (Table 1; Figs 1 and 2). Table 1 also includes the serial

code; the ID Code used on labelling the samples; name of research cruises or fishing trips in

which samples were obtained; collectors; places of harvesting and depths; and measurements

of individuals and sex. All collected specimens belonged to commercial exploited species so

there is no prohibition for their fishing. The fishing vessels and fishing research vessels where

they were captured have the legal permits to carry out their fishing and research activities. This

study did not involve endangered or protected species.

The forty-three samples of muscle tissue collected were preserved in absolute ethanol at

4˚C until their analysis. Total genomic DNA was extracted, using a standard phenol/chloro-

form extraction procedure [12] after an overnight proteinase K digestion (20 mg/ml) at 56˚C.

Two fragments of mitochondrial genes, 16S ribosomal DNA (16S rDNA) and cytochrome oxi-

dase (COI), were amplified using primer pairs 16Sar [13]; 16Sbr.crab [8]; CoL6b [14]; and

COIF.crab (5’CgTgCTgAACTTggTCAAC-3’) (this study), respectively.

Amplifications of PCR were performed in a Bio-Rad S1000 Thermal Cycler with dual bloc

in a total volume of 25 μl including 1x buffer (GeneAll Biotechnology, South Korea), 150 μM

Fig 1. Geographical distribution of samples of Chaceon species collected at different locations of the Eastern Central and South Atlantic

and approximate distribution area of South American species [9] used to contrast our results (maps enlarged to the right).

https://doi.org/10.1371/journal.pone.0211717.g001
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Table 1. List of samples used in the analysis including data related to collection process, locations and biological information.

Serial

Code

ID Code Species Cruise /

Fishing Trip3
Collector Geographical

Area

Latitude Longitude Depth

(m)

Carapace

width (mm)

Carapace

length (mm)

Weight

(g)

Sex

1 CRAB01 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO1 Valdivia Bank -26.1847 6.008 1038 85.8 70.5 151 F

2 CRAB02 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -25.5627 6.0505 888 102.6 88.1 336 M

3 CRAB03 Chaceon atopus CRUPER 2004 COC-IEO Vavilov Ridge -11.458 -1.298 705 136 105 - F

4 CRAB04 Chaceon atopus CRUPER 2004 COC-IEO Vavilov Ridge -11.458 -1.298 705 158 126 - M

5 CRAB05 Chaceon atopus CRUPER 2004 COC-IEO Vavilov Ridge -11.458 -1.298 705 153 122 - M

6 CRAB06 Chaceon atopus CRUPER 2004 COC-IEO Vavilov Ridge -11.579 -5.247 496 156 118 - M

7 CRAB07 Chaceon
sanctaehelenae

CRUPER 2004 COC-IEO Vavilov Ridge -11.601 -5.233 427 117 96 - F

8 CRAB08 Chaceon
sanctaehelenae

CRUPER 2004 COC-IEO Vavilov Ridge -11.601 -5.233 427 123 103 - M

9 CRAB09 Chaceon
sanctaehelenae

CRUPER 2004 COC-IEO Vavilov Ridge -11.601 -5.233 427 150 130 - M

10 CRAB10 Chaceon
sanctaehelenae

CRUPER 2004 COC-IEO Vavilov Ridge -9.886 -5.412 338 107 84 - F

11 CRAB11 Chaceon
sanctaehelenae

CRUPER 2004 COC-IEO Vavilov Ridge -9.886 -5.412 338 117 93 - F

12 CRAB12 Chaceon
sanctaehelenae

CRUPER 2004 COC-IEO Vavilov Ridge -9.886 -5.412 338 130 109 - F

13 CRAB13 Chaceon maritae MAROC 0611 COC-IEO Western Sahara

waters

21.179 -17.703 560 117 104 - M

14 CRAB14 Chaceon affinis GRAN

CANARIA

1403

COC-IEO Canary Is.

(Taliarte)

27.99 -15.3556 750 123 103 463 M

15 CRAB15 Chaceon affinis GRAN

CANARIA

1403

COC-IEO Canary Is.

(Taliarte)

27.99 -15.3556 750 135 112 621 M

16 CRAB16 Chaceon affinis GRAN

CANARIA

1403

COC-IEO Canary Is.

(Taliarte)

27.99 -15.3556 750 123 101 493 M

17 CRAB17 Chaceon affinis GRAN

CANARIA

1403

COC-IEO Canary Is.

(Taliarte)

27.99 -15.3556 750 140 121 684 M

18 CRAB18 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -26.1847 6.008 1038 77.3 66.1 126 F

19 CRAB19 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -26.1847 6.008 1038 121.9 99.7 480 M

20 CRAB20 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -26.1847 6.008 1038 116.8 98.9 466 M

21 CRAB21 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -25.4466 6.1256 882 76.8 63.9 130 M

22 CRAB22 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -25.5627 6.0505 888 90.3 77.5 194 F

23 CRAB23 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -26.1847 6.008 1038 111.6 92 392 M

24 CRAB24 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -25.5627 6.0505 888 78.4 64.5 131 F

25 CRAB25 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -25.5128 6.0629 874 117.52 96.71 447 M

26 CRAB26 Chaceon affinis MARANSA

012M8

COC-IEO Fantasma Bank 31.0249 -12.511 399 123 99 - M

(Continued)
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of each dNTP, 0.4 μM of each primer, 1 U of AmpOne Taq DNA polymerase (GeneAll Bio-

technology, South Korea) and 20 ng of total genomic DNA. PCR conditions were as follows: 2

min at 94˚C followed by 35 cycles of denaturation at 94˚C for 10 s, annealing at 54˚C for 20 s,

and extension at 72˚C for 30 s, with a final extra extension step at 72˚C for 10 min.

Reaction efficiencies were estimated by electrophoresis in agarose real-safe stained gels

(Real Biotech Corporation, Taiwan). Subsequently, PCR products were enzymatically purified

with Illustra ExoProStar 1-Step (GE Healthcare, UK) according to the manufacturer’s instruc-

tions. Sequencing reactions were performed for both strands with the same primers used in

the amplification at the Genomic Service of the University of La Laguna (SEGAI). Sequences

of DNA were edited and assembled using MEGA v. 6 [15]. Sequence alignment was performed

using CLUSTAL W [16] as implemented in MEGA. The absence of stop codons in the COI

Table 1. (Continued)

Serial

Code

ID Code Species Cruise /

Fishing Trip3
Collector Geographical

Area

Latitude Longitude Depth

(m)

Carapace

width (mm)

Carapace

length (mm)

Weight

(g)

Sex

27 CRAB27 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -26.1847 6.008 1038 113 94.4 413 M

28 CRAB28 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -25.5627 6.0505 888 102.3 86.8 300 M

29 CRAB29 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -25.5627 6.0505 888 106.7 88.9 376 M

30 CRAB30 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -26.1847 6.008 1038 108 92.2 372 M

31 CRAB31 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -26.1847 6.008 1038 108.1 92 371 M

32 CRAB32 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -26.1847 6.008 1038 81.5 66.1 121 F

33 CRAB33 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -26.1847 6.008 1038 109.6 92.8 378 M

34 CRAB34 Chaceon
erytheiae

NAMIBIA

0902

COC-IEO Valdivia Bank -25.5627 6.0505 888 93.7 79.4 214 F

35 CRAB35 S1 SEAFO

Comm. Trip

JG-BVZ2 SEAFO (B1) -25.6035 5.8437 1087 102 84 232 M

36 CRAB36 S2 SEAFO

Comm. Trip

JG-BVZ SEAFO (B1) -25.6035 5.8437 1087 102 80 250 F

37 CRAB37 S3 SEAFO

Comm. Trip

JG-BVZ SEAFO (B1) -25.6035 5.8437 1087 116 92 355 F

38 CRAB38 S4 SEAFO

Comm. Trip

JG-BVZ SEAFO (B1) -25.6035 5.8437 1087 112 89 272 F

39 CRAB39 S5 SEAFO

Comm. Trip

JG-BVZ SEAFO (B1) -25.6035 5.8437 1087 111 91 335 M

40 CRAB40 N1 NAMIBIA

Comm. Trip

JG-BVZ Namibia EEZ -20.074 11.815 458 119 105 675 M

41 CRAB41 N2 NAMIBIA

Comm. Trip

JG-BVZ Namibia EEZ -20.074 11.815 458 128 113 828 M

42 CRAB42 N3 NAMIBIA

Comm. Trip

JG-BVZ Namibia EEZ -20.074 11.815 458 140 121 906 M

43 CRAB43 N4 NAMIBIA

Comm. Trip

JG-BVZ Namibia EEZ -20.074 11.815 458 122 103 504 M

1) Centro Oceanográfico de Canarias—Instituto Español de Oceanografı́a

2) Namibian collectors

3) Name of research cruises or fishing trips

https://doi.org/10.1371/journal.pone.0211717.t001

Genetic identification of Chaceon species

PLOS ONE | https://doi.org/10.1371/journal.pone.0211717 February 11, 2019 5 / 18

https://doi.org/10.1371/journal.pone.0211717.t001
https://doi.org/10.1371/journal.pone.0211717


Genetic identification of Chaceon species

PLOS ONE | https://doi.org/10.1371/journal.pone.0211717 February 11, 2019 6 / 18

https://doi.org/10.1371/journal.pone.0211717


alignment was confirmed using the software MEGA 6 [15]. In order to establish the phyloge-

netic relationships within the Chaceon genus, we used published sequences from other two

Chaceon species, C. notialis and C. ramosae [9] from the Western Central Atlantic, as well as

those from Liocarcinus depurator and Carcinus aestuarii used as outgroups in the analysis.

Accession numbers to GenBank data base of all sequences used are reported in Table 2.

Site saturation was evaluated in DAMBE v.5.5.18 software [17] by plotting the numbers of

observed transitions and transversions against pairwise genetic distance.

Phylogenetic relationships were constructed from both individual mitochondrial COI and

16S rDNA, as well as concatenated sequences. The best-fit nucleotide substitution model was

determined using jModelTest 2 [18] according to the Bayesian Information Criterion. HKY

+ G and HKY + I, were the chosen models for COI and 16S rDNA, respectively and so used in

the Maximum Likelihood (ML) and Bayesian Inference (BI) analyses. In the combined data

set, substitution models, parameters of nucleotide frequencies, substitution rates, gamma

shape, and invariant sites proportion were unlinked across partitions.

ML was performed with Treefinder version March 2011 [19] always with 1,000 Bootstrap

replicates (BT). BI analysis was performed using MrBayes v.3.2.1 [20] on the Mobyle SNAP

Workbench [21]. Two parallel runs were performed in MrBayes using four Markov chain

Monte Carlo (MCMC) chains. Ten million MCMC generations were run, with a sampling fre-

quency every 102 generations. Of the resulting trees, the first 10,001 trees were discarded as

burn in after checking for stationarity with TRACER v1.3 [22], and the following 90,000 trees

were used to estimate the topology and tree parameters. Percentage of times a node occurred

within those 90,000 trees was interpreted as the Bayesian posterior probability (BPP) of the

node. Trees generated from both analyses were edited by Treegraph 2 [23].

Results

From all 43 samples of deep-sea red crabs (Chaceon spp.), a fragment of 468 base pairs (bp) of

mtDNA COI gene was amplified and sequenced from 38 samples. The absence of stop codons

seems to discard the presence of nuclear mitochondrial insertions (Numts) in the sequences.

Among the 468 nucleotide sites, 142 sites were variable and 87 were phylogenetically informa-

tive. From 42 samples, the amplification of the corresponding fragment of 16S rRNA resulted

in a single band of 429–430 bp. The alignment of the sequences generated a 432 bp matrix

because of the need to include "gaps" (variants insertion / deletion, "indels") for optimal align-

ment. Of the 432 sites, 104 showed variation and of these, 47 were informative. Indels were dis-

carded in subsequent analyses. The absence of double bands in PCR and double peaks in the

electropherogram of the sequences as well as the similarity among them and with those origi-

nals deposited in Genbank seems to discard the presence of nuclear mitochondrial DNA

sequences (Numts) in these sequences too.

The detected variation between sequences showed no deviation from neutrality in either

case (D = -1.23 and D = -0.31 with P> 0.10 for 16S rRNA and COI, respectively). The satura-

tion plots for COI and 16S rRNA (Fig 3) show that transitions and transversions are roughly

linearly correlated, with the Jukes-Cantor genetic distance [24] with no obvious tendency to

level off. In addition, Xia‘s index for substitution saturation in COI produced values of 0.024

(first and second codon positions) and 0.104 (third codon position), and 0.067 in the case of

the 16S rRNA, significantly lower (P< 0.001 in all cases) than the critical values for symmetric

Fig 2. Specimens of five species of red crabs of the genus Chaceon (A) C. affinis [11], male carapace width 177 mm; (B) C. maritae [11] male carapace width

117 mm: (C) C. atopus [1], male carapace width 153 mm; (D) C. erytheiae [10], male carapace width 112 mm; and (E) C. sanctaehelenae [1], male carapace

width 150 mm.

https://doi.org/10.1371/journal.pone.0211717.g002
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topology. Phylogenetic trees obtained by both methods showed the same topology and so, only

Bayesian trees are shown in Figs 4, 5 and 6 for COI, 16S rRNA, and for the combination of

both, respectively. The Bayesian posterior probability (BPP) and Bootstrap values (BT), sup-

porting the clades are indicated on branches.

The first point that emerges from these relationships is the significant separation of Eastern

Atlantic species, excluding C. sanctaehelenae, from those who inhabit the Atlantic coasts of the

American continent when we take into account the phylogenetic tree for the concatenated

sequences (97% BPP / 83% BT) (Fig 6). Curiously, C. sanctaehelenae species shows a closer

Table 2. GenBank accession numbers of mtDNA COI and 16S rRNA gene sequences.

COI 16S rRNA

Species Haplotypes GenBank

accession

numbers

Number of individuals Species Haplotypes GenBank accession

numbers

Number of individuals

C. erytheiae 1 LN809890 1 C. erytheiae 1 LN809917 22

C. erytheiae 2 LN809891 1

C. atopus 1 LN809892 2

C. atopus 2 LN809893 1

C. atopus 3 LN809894 1

C. sanctaehelenae 1 LN809895 1 C. sanctaehelenae 1 LN809918 5

C. sanctaehelenae 2 LN809896 1 C. sanctaehelenae 2 LN809919 1

C. sanctaehelenae 3 LN809897 1

C. maritae 1 LN809898 2 C. maritae 1 LN809920 4

C. affinis 1 LN809899 1 C. affinis 1 LN809921 2

C. affinis 2 LN809900 1 C. affinis 2 LN809922 1

C. affinis 3 LN809901 1 C. affinis 3 LN809923 1

C. affinis 4 LN809902 1

C. erytheiae 3 LN809903 1 C. erytheiae 2 LN809924 1

C. erytheiae 4 LN809904 1 C. erytheiae 3 LN809925 1

C. erytheiae 5 LN809905 2 C. erytheiae 4 LN809926 1

C. erytheiae 6 LN809906 8 C. erytheiae 5 LN809927 1

C. erytheiae 7 LN809907 1 C. erytheiae 6 LN809928 1

C. affinis 5 LN809908 1

C. erytheiae 8 LN809909 1

C. erytheiae 9 LN809910 1

C. erytheiae 10 LN809911 1

C. erytheiae 11 LN809912 1

C. erytheiae 12 LN809913 1

C. erytheiae 13 LN809914 1

C. maritae 2 LN809915 1 C. maritae 2 LN809929 1

C. maritae 3 LN809916 2

C. ramosae 1 - KC676772 - -
C. ramosae 2 - KC676777 - C. ramosae 2 - KC676755

C. notialis 1 - KC676760 - C. notialis 2 - KC676731 -
C. notialis 2 - KC676762 - C. notialis 3 - KC676732 -
C. notialis 3 - KC676763 -

Outgroups

Liocarcinus
depurator

- JQ305906 - Liocarcinus
depurator

- FM208767 -

Carcinus aestuarii KC311390 Carcinus aestuarii U74327

https://doi.org/10.1371/journal.pone.0211717.t002
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relationship with the species of the American coast, C. ramosae and C. notialis, than with those

from the Eastern Atlantic as C. atopus, although the distribution areas of both species overlap.

On the other hand, all analyses strongly support the close relationship between C. atopus and

C. erytheiae species (100% PPB / 99% BT) (Fig 6). However, while COI marker clearly sepa-

rates both species (99% BPP / 91% BT) (Fig 4), individuals from C. atopus and C. erytheiae
share haplotypes for the 16S rRNA marker (Fig 5).

Finally, it is worth noting that the sequences of 9 samples from Namibia which had not

been morphologically identified turned out to belong to the species C. erytheiae (S1-S5) and C.

maritae (N1-N4) (Table 1) as it was expected, given the geographical location of their capture

Fig 3. Analysis of substitutions (transitions and transversions) for the COI (a) and 16S rRNA (b) data set from species

of Chaceon using JC69 distances (%).

https://doi.org/10.1371/journal.pone.0211717.g003
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Fig 4. Bayesian phylogenetic tree showing the relationships among species of Chaceon based on a 468 bp COI fragment.

Numbers after species name correspond with the serial code in Table 1 except for C. notialis and C. ramosae. Numbers at nodes

represent Bayesian posterior probability and Bootstrap values of maximum likelihood analysis, respectively.

https://doi.org/10.1371/journal.pone.0211717.g004
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Fig 5. Bayesian phylogenetic tree showing the relationships among species of Chaceon based on a 432 bp 16S rRNA fragment.

Numbers after species name correspond with the serial code in Table 1 except for C. notialis and C. ramosae. Numbers at nodes

represent Bayesian posterior probability and Bootstrap values of maximum likelihood analysis, respectively.

https://doi.org/10.1371/journal.pone.0211717.g005
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Fig 6. Bayesian phylogenetic tree showing the relationships among species of Chaceon based on the combined data set of COI and

16S rRNA genes. Numbers after species name correspond with the serial code in Table 1 except for C. notialis and C. ramosae.

Numbers at nodes represent Bayesian posterior probability and Bootstrap values of maximum likelihood analysis, respectively.

https://doi.org/10.1371/journal.pone.0211717.g006
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(Fig 1). A close relationship was observed between C. maritae and C. affinis (94% BPP / 77%

BT). Specimens of C. maritae from the Sahara Coast and Namibia waters did not show any dif-

ferences between them and formed their own clade with 100% Bayesian posterior probability

(Fig 6). On the other hand, C. affinis specimens were also grouped in a different clade with a

relatively high branch support value (100% BPP / 90% BT) (Fig 6).

Discussion

Mitochondrial DNA (mtDNA) is the marker commonly used for genetic reconstruction of the

history of populations, population demography, biogeography and speciation, and recom-

mended for taxonomic studies [25]. Despite the fact that mtDNA is not exempt from some dis-

advantages as the presence of Numts or pseudogenes [26], the presence of nuclear sequences is

highly unlikely in our data.

Nowadays, only two phylogenetic studies have been found regarding Chaceon Atlantic spe-

cies [8, 9] from the Northwest and Southwest Atlantic. Thus, the present work adds a new

piece to the puzzle for the Southeast Atlantic.

Our results show that Chaceon species from the Central and South East Atlantic seem to

have shared a common immediate ancestor with the Western Atlantic species.

Although it is difficult to contrast our results with those from other authors when different

species are studied, some ideas can be extracted expanding the geographic scope. Weinberg

et al. [8] analyzed samples from the Northwest Atlantic, Chaceon quinquedens (Southern New

England and Gulf of Mexico) and C. fenneri (Eastern Florida). Three sequences of C. affinis,
from the Eastern Atlantic (Madeira Islands and Canary Islands) were also included in the anal-

ysis. The authors detected genetic-based subdivision between C. quinquedens from the New

England region of the Atlantic Ocean and C. quinquedens from the Gulf of Mexico by using

sequence data from two genetic loci (16S and ITS). However, they found little or no genetic

difference (16S data) between C. quinquedens from the Gulf of Mexico, C. fenneri from Eastern

Florida, and C. affinis from the Eastern Atlantic, suggesting that these trans-Atlantic taxa share

a more recent common history than the two populations of “C. quinquedens”.

Trying to compare our results with those of Weinberg et al. [8] we added all their sequences

to our 16S rRNA data matrix. The output tree (S1 Fig) identified the samples of New England

C. quinquedens as C. erytheiae, being their haplotypes identical. Also, the sequences of C. quin-
quedens from the Gulf of Mexico corresponded to sequences of C. affinis from the East Atlan-

tic. In spite of the absence of COI sequences for those specimens, the coincidence of the

phylogenetic trees for 16S RNAr and COI in our study would be in agreement with a

misclassification.

In their article, Mantelatto et al. [9] showed that species like C. ramosae and C. notialis form

a differentiated clade, aside from C. affinis and C. maritae clade and that the estimated genetic

distance of COI gene among Chaceon specimens can be used to separate the species C. notialis
and C. ramosae. Once this paper was published, we realized the possible incorrect geographical

location of their C. maritae identification and we personally confirmed that these samples

really belong to the Valdivia Bank. In this sense, given our research experience in this area we

wonder whether the morphological identification of these specimens is correct. Although two

species were initially identified for this region [27, 28], current reanalysis demonstrated the

presence of one single species in all samples (C. erytheiae) belonging to the Valdivia Bank.

In this case, we also tried to understand similarities and differences between their analyses

and our findings, adding their sequences to our data matrix and reanalyzing the outputs. The

phylogenetic tree for COI (S2 Fig) showed that their C. maritae sequences have 100% similarity

with our samples of C. erytheiae, reaffirming the possible morphological misidentification of
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this species by Mantelatto et al. [9]. It was not possible to carry out the same analysis with their

sequences for 16S RNAr since these only overlap with our sequences 200 nts. Anyway, their

sequences are identical to ours of C. erytheiae for the region shared. All the samples we ana-

lyzed from Valdivia Bank belong to C. erytheiae. However, we also have doubts about the COI

sequence they obtained from GenBank for C. affinis, finally not published, and different to the

ones that we obtained for this species (S2 Fig) which could explain the contradictory results

they found between markers.

C. maritae is the main Geryonidae species in the West African coast, from the Western

Sahara coast to the Namibian waters; it is located in the sandy-muddy continental slope at

depths from 200 to 900 meters. This species is part of important fisheries (as by-catch in

trawling deep-sea shrimp fisheries or target species in trap fisheries) along its distribution

area from which Mauritania, Senegal, Angola or Namibia can be highlighted [29, 30, 31, 32,

33]. Results indicate that analyzed samples from Western Sahara coast and Namibian

waters, both extremes of its broad geographic distribution, belong to the same species (BT

and BPP = 100%), which constitutes a quite relevant fact taking into account the physical

separation. However, this homogeneity could be explained by horizontal migratory pro-

cesses of this species along the African coast. Records of mark and recapture individuals of

this species reveal that mature females covered considerable distances of up to 380 km, but

commonly between 100 and 180 km [28].

Despite being morphologically different, C. maritae forms a clade with C. affinis. C. affinis
is a species that has colonized oceanic archipelagos from Cape Verde to Azores [34, 35, 36]

and seamounts off the Central African coast and also the deepest continental slope (700–1900

m) off Morocco and Western Sahara (C. Hernández-González, IEO, pers. comm.), off the

Atlantic coast of the Iberian Peninsula [37], Northeast Atlantic southern 64˚N (Iceland) [38]

and the Mid-Atlantic Ridge hydrothermal vents [39]. There are few records of the presence of

these two species in the same archipelago or seamount, only in the Canary Islands and Cape

Verde [40, 41, 42]. When more than one species settle in any geographic place, the depth range

of distribution of each one tends to be different. This is the case of C. affinis, which distribution

is deeper (500–1900 m) than C. maritae (100–950 m). Both species also show different patterns

of size and sex population structure in relation to depth [35].

Similarly, C. atopus and C. sanctaehelenae seem to inhabit different depths in the same area

of Vavilov Ridge, 500–800 m and 300–400 m, respectively. In relation to these two species it is

interesting to remark that the ancestor of each one seems to have a different geographic origin,

being that of C. sanctaehelenae in the Southwest Atlantic (C. notialis and C. ramosae); while

the ancestor of C. atopus appears to have existed in the eastern Atlantic.

C. atopus and C. erytheiae share a preference for habitats deeper than 500 m, reaching

depths near to 2000 m in the case of C. erytheiae. For these species, the molecular variation

detected for COI, the marker with a higher substitution rate, allowed to distinguish haplotypes

from both species, while for 16S rRNA marker individuals of both species shared haplotypes.

This speaks in favour of a process of incipient speciation between these species.

Photographic records of Chaceon specimens caught along the Walvis Ridge, in the south-

west Valdivia Bank, suggest the presence of C. erytheiae (size<140 mm of carapace width,

CW) at those latitudes, until the Wust Seamount. Size records of individuals from this region

and the southernmost Discovery Seamounts also suggest the presence of another bigger species

that seems to be Chaceon gordonae (size<180 mm of CW), that is one of the cited species in

the northern part of the region which we missed in our genetic analysis.

The basal position of species from the continental slope off Brazil and Uruguay seem to

indicate a closer relationship with the ancestor of the genus. Consistent with our results, the

presence of fossil Chaceon records (C. peruvianus) in South America [43] could represent the
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origin of current species in the Eastern Central and South Atlantic, in a parallel process of

migration-dispersal and speciation northward and eastward. The most suitable path to cross

the Atlantic would be the equatorial region, with a complex system of currents and counter-

currents [44] at different depths that would help pelagic larvae transport [45] to new suitable

habitats in the intermediate seamounts until reaching the west coast of Africa, spreading out

northward and south by migrations and reaching new oceanic features by larvae transport. In

this last mechanism, local oceanographic events as the Angola Gyre could have played an

important role. Also features as the Mid-Atlantic Ridge, Walvis Ridge and Rio Grande Rise

comprise potential paths that could explain the distribution diversity of Chaceon species in

those regions.

Supporting information

S1 Fig. Bayesian phylogenetic tree showing the relationships among species of Chaceon
based on a 432 bp 16S rRNA fragment, including the sequences obtained by Weinberg

et al. (2003) for C quinquedens from Gulf of Mexico and New England. Numbers after spe-

cies name correspond with the serial code in Table 1 except for C. notialis and C. ramosae.

Numbers at nodes represent Bayesian posterior probability and Bootstrap values of maximum

likelihood analysis, respectively.

(TIF)

S2 Fig. Bayesian phylogenetic tree showing the relationships among species of Chaceon
based on a 468 bp COI fragment, including the sequences obtained by Mantellato el al.

(2014) for C. maritae and C. affinis. Numbers after species name correspond with the serial

code in Table 1 except for C. notialis and C. ramosae. Numbers at nodes represent Bayesian

posterior probability and Bootstrap values of maximum likelihood analysis, respectively.

(TIF)
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Barreiro, Roberto Sarralde.

Writing – original draft: Mariano Hernández, M. Virginia Martı́n, Pedro M. Herrador-
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34. Pinho MR, Gonçalves JM, Martins HR, Menezes GM. Some aspects of the biology of the deep-water

crab, Chaceon affinis (Milne-Edwards and Bouvier, 1894) off the Azores. Fish Res. 2001; 51: 283–295.
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