269 research outputs found

    Fluid-Fluid and Fluid-Solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory

    Full text link
    We study the Kern-Frenkel model for patchy colloids using Barker-Henderson second-order thermodynamic perturbation theory. The model describes a fluid where hard sphere particles are decorated with one patch, so that they interact via a square-well (SW) potential if they are sufficiently close one another, and if patches on each particle are properly aligned. Both the gas-liquid and fluid-solid phase coexistences are computed and contrasted against corresponding Monte-Carlo simulations results. We find that the perturbation theory describes rather accurately numerical simulations all the way from a fully covered square-well potential down to the Janus limit (half coverage). In the region where numerical data are not available (from Janus to hard-spheres), the method provides estimates of the location of the critical lines that could serve as a guideline for further efficient numerical work at these low coverages. A comparison with other techniques, such as integral equation theory, highlights the important aspect of this methodology in the present context.Comment: Accepted for publication in The Journal of Chemical Physics (2012

    A chloride channel in rat and human axons

    Get PDF
    Current recordings from single chloride channels were obtained from excised and cell-attached patches of rat and human axons. In rat axons the channels showed an outwardly rectifying current-voltage relationship with a slope conductance of 33 pS at negative membrane potentials and 65 pS at positive potentials (symmetrical 150 mM CsCl). They were measurably for cations (PNa/PCs/PCl=0.1/0.2/1). Channel currents were independent of cytoplasmatic calcium concentration. Inactivation was not observed and gating was weakly voltage dependent. Cl− channels in human axons showed similar gating behavior but had a lower conductance

    Properties of asymmetric nuclear matter in different approaches

    Full text link
    Properties of asymmetric nuclear matter are derived from various many-body approaches. This includes phenomenological ones like the Skyrme Hartree-Fock and relativistic mean field approaches, which are adjusted to fit properties of nuclei, as well as more microscopic attempts like the Brueckner-Hartree-Fock approximation, a self-consistent Greens function method and the so-called VlowkV_{lowk} approach, which are based on realistic nucleon-nucleon interactions which reproduce the nucleon-nucleon phase shifts. These microscopic approaches are supplemented by a density-dependent contact interaction to achieve the empirical saturation property of symmetric nuclear matter. The predictions of all these approaches are discussed for nuclear matter at high densities in ÎČ\beta-equilibrium. Special attention is paid to behavior of the isovector component of the effective mass in neutron-rich matter.Comment: 16 pages, 7 figure

    A simple patchy colloid model for the phase behavior of lysozyme dispersions

    Get PDF
    We propose a minimal model for spherical proteins with aeolotopic pair interactions to describe the equilibrium phase behavior of lysozyme. The repulsive screened Coulomb interactions between the particles are taken into account assuming that the net charges are smeared out homogeneously over the spherical protein surfaces. We incorporate attractive surface patches, with the interactions between patches on different spheres modeled by an attractive Yukawa potential. The parameters entering the attractive Yukawa potential part are determined using information on the experimentally accessed gas-liquid-like critical point. The Helmholtz free energy of the fluid and solid phases is calculated using second-order thermodynamic perturbation theory. Our predictions for the solubility curve are in fair agreement with experimental data. In addition, we present new experimental data for the gas-liquid coexistence curves at various salt concentrations and compare these with our model calculations. In agreement with earlier findings, we observe that the strength and the range of the attractive potential part only weakly depend on the salt content

    Upper limits on the observational effects of nuclear pasta in neutron stars

    Full text link
    The effects of the existence of exotic nuclear shapes at the bottom of the neutron star inner crust - nuclear `pasta' - on observational phenomena are estimated by comparing the limiting cases that those phases have a vanishing shear modulus and that they have the shear modulus of a crystalline solid . We estimate the effect on torsional crustal vibrations and on the maximum quadrupole ellipticity sustainable by the crust. The crust composition and transition densities are calculated consistently with the global properties, using a liquid drop model with a bulk nuclear equation of state (EoS) which allows a systematic variation of the nuclear symmetry energy. The symmetry energy J and its density dependence L at nuclear saturation density are the dominant nuclear inputs which determine the thickness of the crust, the range of densities at which pasta might appear, as well as global properties such as the radius and moment of inertia. We show the importance of calculating the global neutron star properties on the same footing as the crust EoS, and demonstrate that in the range of experimentally acceptable values of L, the pasta phase can alter the crust frequencies by up to a factor of three, exceeding the effects of superfluidity on the crust modes, and decrease the maximum quadrupole ellipticity sustainable by the crust by up to an order of magnitude. The signature of the pasta phases and the density dependence of the symmetry energy on the potential observables highlights the possibility of constraining the EoS of dense, neutron-rich matter and the properties of the pasta phases using astrophysical observations.Comment: 8 pages, 7 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments

    Get PDF
    Salt, glycerol and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory (TPT) and the Derjaguin-Landau-Verwey-Overbeek (DLVO) model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.Comment: Manuscript accepted for publication in The Journal of Chemical Physic

    Comparing ion conductance recordings of synthetic lipid bilayers with cell membranes containing TRP channels

    Get PDF
    In this article we compare electrical conductance events from single channel recordings of three TRP channel proteins (TRPA1, TRPM2 and TRPM8) expressed in human embryonic kidney cells with channel events recorded on synthetic lipid membranes close to melting transitions. Ion channels from the TRP family are involved in a variety of sensory processes including thermo- and mechano-reception. Synthetic lipid membranes close to phase transitions display channel-like events that respond to stimuli related to changes in intensive thermodynamic variables such as pressure and temperature. TRP channel activity is characterized by typical patterns of current events dependent on the type of protein expressed. Synthetic lipid bilayers show a wide spectrum of electrical phenomena that are considered typical for the activity of protein ion channels. We find unitary currents, burst behavior, flickering, multistep-conductances, and spikes behavior in both preparations. Moreover, we report conductances and lifetimes for lipid channels as described for protein channels. Non-linear and asymmetric current-voltage relationships are seen in both systems. Without further knowledge of the recording conditions, no easy decision can be made whether short current traces originate from a channel protein or from a pure lipid membraneComment: 13 pages, 9 Figure

    A survey of the parameter space of the compressible liquid drop model as applied to the neutron star inner crust

    Full text link
    We present a systematic survey the range of predictions of the neutron star inner crust composition, crust-core transition densities and pressures, and density range of the nuclear `pasta' phases at the bottom of the crust provided by the compressible liquid drop model in the light of current experimental and theoretical constraints on model parameters. Using a Skyrme-like model for nuclear matter, we construct baseline sequences of crust models by consistently varying the density dependence of the bulk symmetry energy at nuclear saturation density, LL, under two conditions: (i) that the magnitude of the symmetry energy at saturation density JJ is held constant, and (ii) JJ correlates with LL under the constraint that the pure neutron matter (PNM) EoS satisfies the results of ab-initio calculations at low densities. Such baseline crust models facilitate consistent exploration of the LL dependence of crustal properties. The remaining surface energy and symmetric nuclear matter parameters are systematically varied around the baseline, and different functional forms of the PNM EoS at sub-saturation densities implemented, to estimate theoretical `error bars' for the baseline predictions. Inner crust composition and transition densities are shown to be most sensitive to the surface energy at very low proton fractions and to the behavior of the sub-saturation PNM EoS. Recent calculations of the energies of neutron drops suggest that the low-proton-fraction surface energy might be higher than predicted in Skyrme-like models, which our study suggests may result in a greatly reduced volume of pasta in the crust than conventionally predicted.Comment: 37 Pages, 16 figures, accepted for publication in Astrophysical Journal Supplement Serie

    Self-assembly mechanism in colloids: perspectives from Statistical Physics

    Full text link
    Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model -- the Kern-Frenkel model -- describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperature-density plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.Comment: 14 pages, 7 figures, Special issue for the SigmaPhi2011 conferenc
    • 

    corecore