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Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solu-
tions. We experimentally determined the effect of these additives on the phase behavior of lysozyme
solutions. Upon the addition of glycerol and DMSO, the fluid–solid transition and the gas–liquid co-
existence curve (binodal) shift to lower temperatures and the gap between them increases. The exper-
imentally observed trends are consistent with our theoretical predictions based on the thermodynamic
perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme
pair interactions. The values of the parameters describing the interactions, namely the refractive in-
dices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are
experimentally determined by independent experiments, including static light scattering, to deter-
mine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential
more repulsive, while sodium chloride reduces the repulsion. © 2012 American Institute of Physics.
[doi:10.1063/1.3673442]

I. INTRODUCTION

Proteins are complex macromolecules which play
a crucial role, e.g., as enzymes or structural units, not
only in various processes in living organisms, but also in
biotechnology. Many of these natural or industrial processes
require further ingredients and additives such as salts or
solvents. In biotechnology, these substances are often added
to modify the protein interactions and phase behavior, for
example to favor crystallization.1 There is a great variety
of additives: they include ions, such as sodium chloride
(NaCl) to regulate the electrostatic repulsion or potential, and
liquids, such as glycerol or DMSO, e.g., to stabilize proteins
against denaturation,2 protect proteins against freezing,3, 4 or
inhibit protein aggregation.5 A thorough understanding of
the resulting changes in the interactions and phase behavior
is beneficial for the design and control of these processes.
For example, experience has shown that high quality crystals
are often formed in slightly supersaturated solutions,1 while
protein crystals with many defects or amorphous protein
precipitates (aggregates) are frequently obtained if the sample
is quenched deep into the crystal phase, in particular close
to the metastable gas– liquid coexistence curve where rapid
nucleation occurs.6, 7 Thus, understanding the phase behavior
can guide the design of processes involving proteins.

Despite the huge complexity of proteins, even of glob-
ular proteins such as lysozyme considered here, we will
use a very simple spherically symmetric model. Although
this will not do full justice to the details of the protein

a)Electronic mail: christoph.goegelein@ds.mpg.de.
b)Christoph Gögelein and Dana Wagner contributed equally to this work.

structure and the individual properties of a specific protein,
it will allow us to apply concepts developed in soft matter
physics to protein solutions. It will also shed light on general
properties of proteins which can successfully be described by
a coarse-grained model. On the other hand, the model will
fail to describe certain aspects and thus indicate what defines
the specific properties of a certain protein. To describe the
protein–protein interactions, we use the Derjaguin-Landau-
Verwey-Overbeek (DLVO) potential, a well-established
model potential in colloid physics.8, 9 Based on this interac-
tion model and thermodynamic perturbation theory (TPT),10

we will calculate the phase behavior of lysozyme in aqueous
solution with additives, namely added salt (NaCl), glycerol,
and dimethyl sulfoxide (DMSO), and compare our theoretical
predictions to our experimental observations. For the additive
concentrations studied here, lysozyme does not unfold or
undergo conformational changes.11–13 This allows us to test
the validity and limits of the simple model, to investigate the
effects of these additives on the interactions and the phase
behavior, and to understand at least qualitatively the trends
observed in our experiments.

In several previous studies, the properties of lysozyme
solutions, namely the protein–protein interactions and the
phase behavior, were described using the DLVO potential.
Poon et al.14 studied the fluid–solid transition, i.e., the
crystallization or solubility boundary, as a function of salt and
protein concentration as well as the pH of the solution and
thus the protein charge. They found a universal crystallization
boundary if the salt concentration is normalized by the
square of the protein charge and supported this finding by
the behavior of the second virial coefficient calculated using
the DLVO potential. A more detailed analysis was later
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provided by Warren.15 Similarly, computer simulations by
Pellicane et al.16 based on the DLVO model showed that the
shape of the gas–liquid coexistence curve can successfully be
predicted with the critical temperature strongly depending on
the Hamaker constant. By contrast, Broide et al.17 report that
the DLVO model cannot fully explain their experimentally
observed phase behavior; the predicted height of the Coulomb
barrier is too low to inhibit protein aggregation. This suggests
that hydration forces are important to prevent lysozyme from
aggregating.

Despite the widespread use of additives such as glycerol
and DMSO, for example in crystallization essays, only a few
studies were concerned with their effect on the phase behav-
ior of proteins. Farnum and Zukoski18 studied the effect of
glycerol on the protein interactions in aqueous solutions of
bovine pancreatic trypsin inhibitor (BPTI). Upon increasing
the glycerol concentration, the repulsive interaction increases.
A description of these data based on the DLVO model re-
quires a Hamaker constant which is much smaller than ex-
pected from the optical properties of water–glycerol mixtures
and of proteins. They thus attributed their observations to a
small increase of the effective protein size which is caused
by an enhanced hydration shell (and modeled by an increased
cut-off length δ, see Sec. III A 2). This is supported by ob-
servations of Priev et al.19 Their experiments indicate an in-
crease of the hydration shell upon addition of glycerol and, at
the same time, a decrease of the core volume of BPTI. Sim-
ilarly, using small-angle neutron scattering, Sinibaldi et al.20

observed, upon increasing the glycerol content, a significant
increase of the hydration shell of lysozyme from 0.3 nm to
0.6 nm, and a small decrease of the core volume of lysozyme
of about 6%, such that the total effective protein volume in-
creases by at least about 13%.20, 21 In the presence of glyc-
erol, Esposito et al.22 furthermore observed an increase of
the hydrodynamic radius with increasing temperature. Using
computer simulations, Vagenende et al.12 found that glycerol
preferentially interacts with the hydrophobic patches on the
lysozyme surface. Glycerol molecules shield these patches
with their hydrocarbon backbone, allowing the lysozyme hy-
dration shell to grow. Moreover, Sedgwick et al.23 studied the
effect of up to 40 vol.% glycerol on the phase behavior of
lysozyme. They found that, based on the DLVO model, the
phase behavior can be described almost quantitatively if the
glycerol-induced changes in the dielectric constant and index
of refraction are taken into account. The effect of glycerol and
DMSO on the fluid–solid boundary of lysozyme solutions has
also been studied by Lu et al.24 Both additives increase the
lysozyme solubility. Furthermore, consistent with the previ-
ously mentioned study,23 Lu et al.24 found that glycerol and
DMSO decrease the protein critical supersaturation, thereby
promoting nucleation. In subsequent work, Gosavi et al.25

studied the formation of lysozyme crystals showing that the
crystal growth rate is enhanced upon addition of glycerol.
Similar observations were made by Kulkarni and Zukoski.26

Furthermore, Arakawa et al.3 and Kamiyama et al.4 observed
a preferential hydration of lysozyme in water–DMSO mix-
tures, indicating that DMSO does not bind to the lysozyme
surface.4 This suggests that DMSO mainly affects the di-
electric properties of the bulk solution. Nevertheless, DMSO

leads to denaturation at volume fractions beyond 70 vol.%.13

It is hence still not clear whether the addition of glycerol and
DMSO only changes the solvent dielectric constant and re-
fractive index or whether it also has a significant effect on the
protein, in particular on its hydration.

Combining theory and experiment, we investigate the
phase behavior of aqueous lysozyme solutions with additives.
The samples contain 0.7 M or 0.9 M NaCl, up to 20 vol.%
glycerol and up to 15 vol.% DMSO. By optical inspection, we
experimentally determine both the fluid–solid transition and
the metastable gas– liquid coexistence curves (binodals). Of
particular interest is their relative location in dependence on
the amount of added glycerol and DMSO, since protein crys-
tallization is expected to be enhanced in the vicinity of the
gas–liquid critical point.6 As we will show, the experimen-
tally determined phase diagram of lysozyme is qualitatively
consistent with our theoretical predictions. They are based on
the DLVO model and TPT,10 and are preformed without any
free parameters. The values of the parameters describing the
DLVO model are either taken from the existing literature or
determined by independent measurements, namely refractom-
etry to measure the refractive indices and static light scattering
(SLS) to determine the second virial coefficient. These inde-
pendent measurements also provide detailed information on
the effect of the additives on the protein interactions.

The organization of this paper is as follows. In Sec. II,
we describe the experimental procedures. Section III A intro-
duces the DLVO model for the protein–protein interactions
and presents the values of its parameters. Based on this model
and without additional free parameters, in Sec. III B the phase
behavior is calculated using thermodynamic perturbation the-
ory. Then the predicted phase behavior is compared to our ex-
perimental observations. Finally, our findings are summarized
in Sec. IV.

II. MATERIALS AND EXPERIMENTAL METHODS

A. Materials and sample preparation

We used three-times crystallized, dialyzed, and
lyophilized hen egg-white lysozyme powder (Sigma
Aldrich L6876). An aqueous 50 mM sodium acetate buffer
was prepared and adjusted with hydrochloric acid to pH
= 4.5. The protein powder was dissolved in this buffer to
result in a concentration of about 40 mg/ml. This suspension
was several times passed through a filter with pore size
0.1 μm (Acrodisc syringe filter, low protein binding, Pall
4611) to remove impurities and undissolved protein. This so-
lution subsequently was concentrated by a factor of six using
an Amicon stirred ultra-filtration cell (Amicon, Millipore,
5121) with an Omega 10 k membrane disc, Pall OM010025.
The concentrated solution was used as protein stock solution.
Its protein concentration was determined in a quartz cell with
a path length of 1 cm by UV absorption spectroscopy at a
wavelength of 280 nm using a specific absorption coefficient
of E = 2.64 ml/(mg cm).

Samples were prepared by mixing appropriate amounts
of protein stock solution, buffer, salt solution (3 M NaCl with
buffer), glycerol solution (70 vol.% glycerol with buffer), and
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DMSO. Mixing was performed at a temperature above the
metastable gas– liquid coexistence to prevent phase separa-
tion. The glycerol samples contained 0.9 M and 0.7 M NaCl,
the DMSO samples 0.7 M NaCl, and all samples contained
buffer and various concentrations of lysozyme.

In order to obtain protein concentrations above that of the
stock solution, we exploited the gas–liquid phase separation.
A solution was quenched into the metastable gas– liquid coex-
istence region, centrifuged for 10 min at a temperature below
the cloud point temperature, and the protein-rich phase was
collected. The resulting protein concentration of the protein-
rich phase was calculated from the volume ratio of the two
coexisting phases, the initial protein concentration and the
protein concentration of the protein-poor phase, which was
determined via its refractive index.

B. Determination of the phase boundaries

The gas–liquid coexistence curves (binodals) were deter-
mined by cloud point measurements. The sample was filled
into a NMR tube with 5 mm diameter, sealed, and placed into
a water bath at a temperature above the demixing point. The
temperature subsequently was lowered stepwise and the cloud
point temperature identified by the sample becoming turbid.
This measurement was repeated for samples with different
lysozyme volume fractions to determine the location of the
binodals.

To determine the crystallization boundary, the sample
was filled into an x-ray capillary tube and sealed with UV
curing glue (Norland). The capillary was then mounted onto
a home-built temperature stage that allows for observation by
optical microscopy (Nikon Eclipse 80i). For samples with a
low protein concentration, it was necessary to lower the tem-
perature to +4◦C to induce crystallization. Once crystals were
formed, the temperature was raised stepwise. The tempera-
ture at which the crystals begin to melt was identified with
the transition temperature. Again, the experiments were re-
peated with different lysozyme volume fractions to obtain the
fluid–solid coexistence curves.

C. Determination of the refractive indices

We used a temperature-controlled Abbe refractometer
(Model 60L/R, Bellingham & Stanley) operated at a wave-
length of 589.6 nm to determine the refractive indices of the
samples, that is of the protein solutions, n, and of the solvent,
ns. The refractive index increments, dn/dcp, were obtained
from linear fits to the dependence of n on the mass protein
concentration, cp.

D. Determination of the second virial coefficient

SLS was performed with a 3D light scattering instrument
(LS-Instruments). Due to the low scattering intensity of the
samples, the instrument was operated with a single beam with
wavelength λ = 633 nm. The samples were filled into cylin-
drical glass cuvettes with a diameter of 10 mm, centrifuged for
at least 10 min at typically 7 500 g prior to the measurements,

and placed into the temperature-controlled vat of the instru-
ment which was filled with decalin. The samples used for the
SLS measurements were dilute with lysozyme concentrations
between 2.8 mg/ml and 14.4 mg/ml.

We did not observe a dependence of the scattered inten-
sity, Ip, on the scattering angle, θ , consistent with the small
protein diameter σ = 3.4 nm27, 28 compared to the inverse of
the scattering vector q = (4πn/λ)sin (θ /2) so that q σ � 1.29

Therefore, the time-averaged intensity scattered by the protein
solution, 〈Ip(cp)〉, was detected at a single scattering angle, θ

= 90◦, corresponding to a magnitude of the scattering vector
q ≈ 0.018 nm−1. The excess scattering due to the protein is
expressed as the Rayleigh ratio,

R(cp) = 〈Ip(cp)〉 − 〈Is〉
〈It〉

n2

n2
t

Rt , (1)

which relates the difference in the average scattering inten-
sities of the protein solution and the solvent, 〈Ip(cp)〉 − 〈Is〉,
to the scattered intensity of the toluene reference, 〈It〉, with
known Rayleight ratio, Rt. The ratio of the refractive indices
of the protein solution, n, and toluene, nt, accounts for the
different sizes of the scattering volumes in the two cases. The
temperature dependence of Rt was experimentally determined
from the temperature dependence of the intensity scattered by
a toluene sample. The absolute value Rt = 1.40 × 10−5 cm−1

at T = 35◦C was taken from literature30 and is consistent with
other reports (see Ref. 31 and references therein).

For dilute solutions, R(cp) is related to the second virial
coefficient, B2, by

K cp

R(cp)
= 1

M (0)

(
1 + 2 NA B2

M (1)
cp

)
, (2)

where M(0) and M(1) both represent the molar mass M, but by
two different values (see below), NA is Avogadro’s constant
and K an optical constant given by

K = 4π2n2
s

NAλ4

(
dn

dcp

)2

. (3)

Note that the refractive indices and the refractive index incre-
ments in the above equations depend on temperature.

SLS measurements of a series of protein concentrations
hence allow to determine B2 from the slope of the cp depen-
dence, and the molar mass M from the intercept at cp → 0.
The measurements were performed at different temperatures
T to obtain the temperature dependence of B2(T), while M
is expected to be temperature independent. The values of
the molar mass, experimentally determined at different tem-
peratures from the intercept at cp → 0, lie in the range
14 800 g/mol � M(0) � 19 500 g/mol, while the expected
value is 14 320 g/mol.32 The error in M(0) is mainly due to
the low scattered intensity, uncertainties in dn/dcp and Rt. Dy-
namic light scattering experiments on the same dilute samples
did not indicate the presence of aggregates, which are also
neither expected for aqueous solutions7, 33 nor for glycerol–
water12 or DMSO–water mixtures.13 To avoid that experimen-
tal errors in the molar mass affect B2(T), we used the litera-
ture value 14 320 g/mol in the term for the slope, 2NAB2/M(1),
i.e., M(1) = 14 320 g/mol, when calculating B2(T) based on
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Eq. (2).34 This renders B2(T) independent of the absolute scat-
tered intensity, i.e., M(0), which has a significant uncertainty,
and thus makes B2(T) more reliable.

III. RESULTS AND DISCUSSION

We first present the simple model used to quantify
the protein–protein interactions, namely the DLVO potential
model (Sec. III A 1), as well as the values of its parameters.
These are either taken from the literature, or determined by
independent measurements (Sec. III A 2). Based on this inter-
action potential and these parameter values, we calculate the
phase diagram without any free parameter (Sec. III B 1). Our
experimentally determined phase diagrams (Sec. III B 2) are
then compared to the theoretical predictions (Sec. III B 3).

A. Protein–protein interaction potential

1. DLVO model

The DLVO pair potential, u(r), includes three parts: hard-
sphere u0(r), repulsive electrostatic uel(r), and attractive van
der Waals interactions uvdW(r),

u(r) = u0(r) + uel(r) + uvdW(r) , (4)

where r is the center-to-center distance of two spherical parti-
cles.

The hard-sphere contribution is

u0(r) =
{∞ , r < σ

0 , r ≥ σ .
(5)

The electrostatic repulsion is described by a screened
Coulomb potential,

βuel(r) = Z2lB

(1 + κσ/2)2

exp [−κ(r − σ )]

r
(r ≥ σ ) , (6)

where β = 1/(kBT) with kB the Boltzmann constant, σ the
diameter, Z the charge, and lB = e2/ (4πε0εskBT) the solvent-
specific Bjerrum length depending on the elementary charge,
e, dielectric constant in vacuo, ε0, and dielectric constant of
the solvent, εs. The square of the electrostatic (Debye) screen-
ing parameter, κ , is given by

κ2 = 4πlBNA

1 − φ

(
Z

ρp

M
φ + 2cs + 2cb

)
, (7)

where φ = cp/ρp is the particle volume fraction with ρp the
mass density, cs the molar salt concentration and cb the molar
concentration of dissociated buffer. The factor 1/(1 − φ) cor-
rects for the volume occupied by proteins and thus takes into
account the free volume accessible to the micro-ions, which
cannot penetrate the protein.35, 36 We ignore here the small
free volume corrections arising from the finite size of the mi-
croions.

The van der Waals attraction is of the form8

uvdW(r) = − A

12

(
σ 2

r2 − σ 2
+ σ 2

r2
+ 2 ln

[
1 − σ 2

r2

])
(r ≥ σ + δ) , (8)

where A is the (effective) Hamaker constant and δ a cut-off
length. The cut-off length δ represents the smallest possible
surface-to-surface separation of two proteins, introduced to
avoid the unphysical 1/(r − σ ) divergence at r → σ . Its value
can be estimated by the thickness of the Stern layer, i.e., by
the mean size of the salt ions.

The Hamaker constant can be approximated by8

A = Aν=0 + Aν>0

= 3

4
kBT

(
εp − εs

εp + εs

)2

+ 3hνe

16
√

2

(
n2

p − n2
s

)2

(
n2

p + n2
s

)3/2 , (9)

where Aν = 0 is the zero-frequency and Aν > 0 the frequency-
dependent part, h the Planck constant, εs and εp the static di-
electric constants of the solvent and protein, ns and np their
refractive indices, and νe = 3 × 1015 s−1 the characteristic
UV electronic adsorption frequency.8

2. Values of the model parameters

To quantitatively determine the potential u(r), we require
the values of the refractive indices and static dielectric con-
stants, of the cut-off length δ, and of the parameters describing
the protein. Lysozyme is an approximately spherical protein
with an effective diameter σ = 3.4 nm,27, 28 molar mass M
= 14 320 g/mol, mass density ρp = 1.351 g/cm332 and Z
= 11.4 net positive elementary charges at the present
pH = 4.5.37 The acidity constant of sodium acetate is pKa

= 4.76 resulting in a dissociated buffer concentration of cb

= 27 mM at pH = 4.5.

a. Refractive indices and static dielectric constants. The
protein index of refraction is obtained by the linear extrap-
olation, np = 6 M/(NAπσ 3) dn/dcp + ns, where 6/(NAπσ 3)
is the molar concentration of a “bulk” protein. We find no
significant dependence of dn/dcp on composition or tempera-
ture in the relevant parameter range, consistent with previous
findings.38 Averaging dn/dcp over all tested temperatures and
compositions yields np = 1.72.

It is usually assumed that dry protein has a static
dielectric constant in the range of 2 ≤ εp ≤ 4.23, 39 However,
measurements with protein powders often indicate larger val-
ues, for example 1 ≤ εp ≤ 10 for wet lysozyme powder,40 20
≤ εp ≤ 37 for hydrated lysozyme crystals41 and, based on MD
simulations, εp = 25.7 for lysozyme in aqueous solution.42

The larger values are attributed to water or moisture leading
to hydration and some water penetration.39 For consistency
with previous work,23, 39 we use a static dielectric constant
of lysozyme given by εp = 2. We might underestimate in
this way εp and thus overestimate the static contribution to
the Hamaker constant Aν = 0 (Eq. (9)) and hence the protein
attraction. However, the effects are not significant, because,
as will be shown below, the main contribution to the Hamaker
constant is due to the non-zero frequency term Aν > 0.

The refractive index of the solvent, ns, was measured
and found to decrease with increasing temperature (Fig. 1).
The refractive indices of glycerol, ng, and DMSO, nDMSO, are
larger than the one of water, nw. For example, ng = 1.47,
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FIG. 1. Temperature dependence of the index of refraction of the solvent,
ns(T), for different added NaCl concentrations, cs, as well as glycerol and
DMSO contents (as indicated). The lines are linear fits to the experimental
data points.

nDMSO = 1.48, and nw = 1.33 at T=20 ◦C. The addition of
glycerol or DMSO thus increases ns.

The dielectric constant of the solvent, εs, was taken
from literature43–49 (Fig. 2). It decreases with increasing
temperature, which is due to the increasing thermal motion
of the solvent molecules and reduces the alignment of the
dipolar molecules by an external electric field. The dielectric
constants of glycerol, εg, and DMSO, εDMSO, are much
smaller than the one of water, εw, for example, εg = 41,
εDMSO = 48, and εw = 80 at T = 20 ◦C. Therefore, the solvent
dielectric constant, εs, decreases with increasing glycerol and
DMSO content, with the decrease being more pronounced
for glycerol (Figs. 2(a) and 2(b)). There is also a significant
decrease of εs with increasing salt concentration, cs; adding
0.7 M NaCl lowers εs more than adding 20 vol.% glycerol

FIG. 2. Temperature dependence of the dielectric constant, εs(T), of differ-
ent solvent mixtures: (a) water–glycerol,43–45 (b) water–DMSO,46 and (c)
aqueous salt solutions.47–49 The lines are linear fits. The fits that belong to
solutions containing 10 and 20 vol.% glycerol are based on five data points in
an extended temperature range 20 ◦C ≤ T ≤ 80 ◦C.

(Fig. 2(c)).47–49 This decrease is related to the decrease in the
electric polarizability of the solution caused by the alignment
and attraction of the water molecules by the salt ions.

Based on these static dielectric constants, we cal-
culate the repulsive electrostatic interaction part, uel(r),
(Eqs. (6) and (7)) for the different compositions, i.e., different
added salt, glycerol, and DMSO content. Upon increasing
the salt (NaCl) concentration cs, the screening parameter, κ ,
increases and thus the contact value of the electrostatic poten-
tial, uel(σ ), decreases (Fig. 3). In addition, uel(σ ) depends on
the solution composition since the Bjerrum length lB depends
on εs. Adding glycerol or DMSO decreases εs (Figs. 2(a) and
2(b)) and hence increases uel(σ ), with the effect of glycerol
being significantly stronger.

We have determined the zero- and non-zero frequency
parts of the Hamaker constant (Eq. (9)) based on the above
values of the refractive indices and static dielectric constants.
The non-zero frequency part, Aν > 0, is about ten times larger
than the zero-frequency part, Aν = 0, and hence dominates A
(Fig. 4). Both parts decrease with increasing temperature as
well as increasing salt, glycerol, and DMSO content. Glyc-
erol and DMSO cause about the same decrease of Aν > 0, re-
flecting a similar effect on ns (Eq. (9) and Fig. 1). In con-
trast, we find a less significant decrease of Aν = 0 upon ad-
dition of DMSO than of glycerol, due to the weak effect of
DMSO on εs (Fig. 2(b)). Added salt (NaCl) causes a pro-
nounced decrease of Aν = 0 since salt significantly lowers εs

(Fig. 2(c)). For our sample compositions, i.e., solvent mix-
tures with added salt, the temperature dependence of εs is not
available. However, since Aν = 0 is much smaller than Aν > 0,
we neglect the effect of added salt and consider only the ef-
fect of glycerol and DMSO. Nevertheless, in our calculations
we take into account the effect of added salt on ns and thus
Aν > 0 (Fig. 4(b)), which represents the dominating contribu-
tion to the Hamaker constant. Glycerol and DMSO not only
similarly affect Aν > 0 and thus the Hamaker constant A, but
also the total DLVO pair potential, u(r) (see Fig. 5).

FIG. 3. Temperature dependence of the contact value of the reduced elec-
trostatic interaction potential, βuel(σ ) = Z2lB/(σ [1 + κσ /2]2), for different
added NaCl concentrations, cs, as well as glycerol and DMSO volume frac-
tions (in vol.%, as indicated). Note the break in the ordinate axis.
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FIG. 4. Temperature dependence of the (a) zero-frequency, Aν = 0, and (b)
non-zero frequency, Aν > 0, parts of the Hamaker constant in Eq. (9) for
different compositions. (a) water–glycerol mixtures without NaCl (purple
dashed lines), water–DMSO mixtures without NaCl (green solid lines), aque-
ous salt solutions with 0.7 M NaCl (black dotted line), and 0.9 M NaCl (blue
solid line), (b) water–glycerol mixtures containing 0.7 M NaCl (black dot-
ted lines), water–glycerol mixtures containing 0.9 M NaCl (blue solid lines),
and water–DMSO mixtures containing 0.7 M NaCl (green solid lines). The
numbers indicate the volume fractions (in vol.%) of glycerol and DMSO.

b. Cut-off length δ. There is one potential parameter left
to be determined, namely the cut-off length, δ. We choose it
such that it reproduces the second virial coefficient, B2(T),
which we have experimentally determined by static light scat-
tering.

From a theoretical point of view, the second virial coeffi-
cient, B2(T), is introduced by expanding the reduced free en-
ergy density, f(T, φ), in a power series of the particle volume
fraction, φ, according to

f (T , φ) = f id
0 (φ) + 4b2(T )φ2 + O(φ3) , (10)

which involves the ideal gas part of the free energy density,
f id

0 , and its leading-order correction, the normalized or re-

FIG. 5. DLVO pair potential, u(r), for NaCl concentration cs = 0.7 M, pro-
tein volume fraction φ = 0.002, and temperature T = 20 ◦C, for an aqueous
solution (black line), a water–glycerol mixture (10 vol.%, red line), and a
water–DMSO mixture (5 vol.%, green line). The vertical lines indicate the
cut-off distances δ of the van der Waals attraction.

duced second virial coefficient,

b2(T ) = B2(T )

B
(0)
2

. (11)

The latter is equal to the ratio of the second virial coefficient,

B2 = −1

2

∫
dr (exp [−βu(r)] − 1) , (12)

to the second virial coefficient of a hard-sphere system, B
(0)
2

= 2π (σ + δ)3/3. For the DLVO pair potential, u(r), (in Eq.
(4)) the normalized second virial coefficient, b2, can be writ-
ten as

b2 = 1 − 3

(σ + δ)3

∫ ∞

σ+δ

dr r2

× (exp [−β(uel(r) + uvdW(r))] − 1) . (13)

The second virial coefficient characterizes the thermodynamic
strength of the pair interactions. Positive values of b2 indi-
cate that repulsive interactions dominate, while negative val-
ues correspond to dominating attraction.

Using SLS, we determined the temperature dependence
of b2(T) in the range 10 ◦C < T < 40 ◦C for all relevant so-
lution compositions, i.e., salt (NaCl) concentrations, cs, as
well as glycerol and DMSO volume fractions (Fig. 6). Out-
side this temperature range, reliable SLS experiments can-
not be performed. With increasing temperature, as expected
b2(T) and thus the repulsion increases, which reflects the in-
creasing electrostatic (Fig. 3) and decreasing van der Waals
interactions (Fig. 4). This leads also to an increase of b2(T)
with increasing glycerol and DMSO concentrations, in agree-
ment with previous observations,23, 26, 50 with DMSO having a
significantly more pronounced effect. Furthermore, b2(T) in-
creases on lowering cs, due to the increased electrostatic re-
pulsion (Figs. 6(a) and 6(b)). The sample with cs = 0.7 M and
20 vol.% glycerol even shows a positive b2(T) in the investi-
gated temperature range 10 ◦C < T < 40 ◦C, indicating that
the lysozyme pair potential is predominantly repulsive at high
glycerol concentrations.

FIG. 6. Temperature dependence of the normalized second virial coefficient,
b2(T), for different added NaCl concentrations, cs, as well as glycerol and
DMSO contents (as indicated), experimentally determined by static light
scattering. The solid lines represent fits assuming a linear temperature de-
pendence of the cut-off length δ.
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FIG. 7. Temperature dependence of the cut-off length δ(T) as obtained from
fits of DLVO-based predictions to the measured b2(T). (a) Different added
NaCl concentrations, cs, and glycerol contents, and (b) same NaCl concen-
tration cs = 0.7 M, but different glycerol and DMSO contents (as indicated).

The experimental b2(T) is fitted by the DLVO potential
prediction (Eq. (13)), with the cut-off length δ being the only
adjustable parameter. A constant δ does not reproduce the ex-
perimental data satisfactorily. We thus assume a linear tem-
perature dependence of the cut-off length, δ(T) = δ0 + δ1T,
and fit the coefficients δ0 and δ1 to obtain optimal agreement
between experimental and theoretical b2(T) in the temperature
range 10 ◦C < T < 40 ◦C (Fig. 6). The fitting is done by ap-
plying the Levenberg–Marquardt method,51 and the improper
integrals appearing in the expression for the second virial co-
efficient are evaluated using the Chebyshev quadrature. For
all considered compositions and the temperature range of the
light scattering experiments, δ(T) increases with increasing T
(Fig. 7). Its values are in the range 0.15 nm ≤ δ(T) ≤ 0.3 nm,
except for the solution with 0.7 M NaCl and 20 vol.% glycerol
for which unphysically large δ(T) are obtained. This range of
values agrees with previously published values, which are in
the range of 0.1 nm ≤ δ(T) ≤ 0.3 nm.27, 28, 52–54 The large val-
ues for δ(T) obtained for 0.7 M NaCl and 20 vol.% glycerol
are due to the positive-valued experimental b2(T), while the
DLVO model predicts a predominantly attractive potential
and thus a negative b2(T). This forces δ(T) to rapidly grow
with T to reduce the attractive van der Waals contribution. The
effect of the van der Waals interaction on b2(T) is controlled
by the Hamaker constant A and the cut-off length δ. A change
in one of the two hence can be compensated (or enhanced) by
a corresponding change in the other parameter.

The cut-off length, δ, accounts for molecular effects on a
coarse-grained level, such as the solvation shell, which might
contain both water and additive molecules (see Sec. I), or the
condensation of counterions on the protein surface, i.e., in
the Stern layer. Its increase with increasing temperature and
glycerol content is consistent with previous findings.12, 20, 22

As mentioned above, glycerol affects b2(T) less than DMSO,
i.e., the addition of 10 vol.% glycerol has about the same ef-
fect as 5 vol.% DMSO (Figs. 6(b) and 6(c)), although the op-
tical properties of the two solvents suggest a similar effect
on Aν > 0 and thus A (Fig. 4) and, due to the small effect of
glycerol and DMSO on the electrostatic interactions (Fig. 3),
also on the DLVO potential (Fig. 5). This results in a larger

cut-off length δ(T) for DMSO for a given concentration of
glycerol or DMSO (Fig. 7), and suggests that glycerol and
DMSO interact differently with lysozyme. Compared to glyc-
erol, little is known about the DMSO–lysozyme interactions,
apart from a preferential hydration of lysozyme in water–
DMSO mixtures indicating a weak or no binding of DMSO
to lysozyme.3, 4 This suggests that DMSO mainly influences
the dielectric properties of the solution, and is consistent with
the observed weaker temperature dependence of the cut-off
length δ(T) in the case of DMSO.

B. Phase behavior

We have now determined all values of the parameters de-
termining the DLVO model. We can thus predict the phase
behavior without any free parameters and compare it to our
experimental observations.

1. Phase behavior and free energy by
thermodynamic perturbation theory

Our prediction of the phase behavior of lysozyme
is based on expressions for the Helmholtz free energy
which are obtained by the second-order TPT of Barker and
Henderson.10 Knowledge of the free energy of the fluid and
solid phases allows us to deduce all equilibrium thermody-
namic properties, such as the fluid–solid and gas–liquid co-
existence curves including the critical point. The Barker–
Henderson theory is known to yield quite accurate results.55, 56

It is therefore widely used to calculate the phase diagram of
protein solutions.57–61

Within TPT, the free energy, F, is expanded in powers
of the perturbation potential up = u − u0, where u0 is the
pair potential of a reference system and u the total protein-
protein pair potential (see Eq. (4)). The reference system is
an effective hard-sphere system with diameter σ + δ, which
takes into account the cut-off length δ in Eq. (8). Instead of
the free energy, F(N, V, T), of a system with N proteins in
a volume V, we use the dimensionless free energy density f
= βFv0/V, where v0 = πσ 3/6 is the particle volume. Expand-
ing the free energy density, f, up to second order in up gives

f (φ, T ) = f0(φ) + 12

(σ + δ)3 φ′2
∫ ∞

σ+δ

dr r2g0(r) βup(r)

− 6

(σ + δ)3 φ′2
(

∂φ

∂�0

)
T

∫ ∞

σ+δ

dr r2 g0(r)

× [βup(r)]2 , (14)

where φ′ = φ(1 + δ/σ )3 is the effective sphere volume frac-
tion, and χT/(βv0) = 1/φ(∂φ/∂�0)T the isothermal compress-
ibility of the reference system with �0 its dimensionless os-
motic pressure. Furthermore, g0(r) is the radial distribution
function of hard spheres in the fluid phase, and the orienta-
tionally averaged pair distribution function of hard spheres
in the solid phase. For the radial distribution function in
the fluid phase, we use the Verlet–Weis corrected62 Percus–
Yevick solution,63, 64 and for the orientationally averaged pair
distribution function the expression by Kincaid65 for a face-
centered cubic (fcc) crystal phase. The free energy density,
f0(φ), of the effective hard-sphere reference system is sep-
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arately defined in the fluid and solid branches. In the fluid
phase, f0(φ) consists of two parts: first, the ideal gas part,

α f id
0 (φ) = φ′[ln(φ′�3/v0) − 1] , (15)

where � = h/
√

2πmpkBT is the thermal wavelength, mp the
protein mass and α = φ′/φ. Second, the interaction part which
is approximated by the accurate Carnahan–Starling equation
of state,66

α f CS
0 (φ) = 4φ′2 − 3φ′3

(1 − φ′)2
. (16)

In the solid phase, f0(φ) is described by Wood’s equation of
state67 on assuming a fcc crystalline lattice,

α f
solid

0 (φ) = 2.1306 φ′ + 3 φ′ ln

(
φ′

1 − φ′/φcp

)

+φ′ ln

(
�3

v0

)
, (17)

where φcp = π
√

2/6 is the fcc volume fraction for closed
packing. To evaluate the free energy density, f(φ, T), in the
solid phase, the integrals in Eq. (14) are divided into intervals
centered around the crystal lattice sites, which is necessary
to sufficiently resolve the discreteness of g0(r) that develops
with increasing φ.

The coexistence of gas (g) and liquid (l) phases requires
an identical temperature T, osmotic pressure � and chemi-
cal potential μ in both phases. While the temperatures of two
phases in contact are always identical under equilibrium con-
ditions, the latter two conditions determine the two volume
fractions, namely that of the coexisting gas, φg, and liquid
phase, φl,

�g(T , φg) = �l(T , φl) with

�(T , φ) = φ2

(
∂(f (T , φ) / φ)

∂φ

)
T

, (18)

μg(T , φg) = μl(T , φl) with

βμ(T , φ) =
(

∂f (T , φ)

∂φ

)
T

. (19)

Similarly, the coexistence of fluid (f) and solid (s) phases is
determined by the two conditions,

�f(T , φf) = �s(T , φs), (20)

μf(T , φf) = μs(T , φs) , (21)

where φf is the volume fraction of the fluid, and φs the one
of the coexisting solid phase. To compute the phase coexis-
tence curves, the Newton–Raphson method with line search
is applied.51

The critical point terminates the gas–liquid coexistence
curve. It is determined by the vanishing second and third
derivatives of the free energy density by, i.e.,

∂2f (Tc, φc)

∂2φ
= 0 and

∂3f (Tc, φc)

∂3φ
= 0 . (22)

The higher-order derivatives of the free energy are calculated
using Ridder’s implementation of Neville’s algorithm.51

FIG. 8. Phase diagrams with fluid–solid and gas–liquid coexistence curves
of attractive Yukawa potential systems with different ranges of attraction,
z−1, as indicated. Coexistence curves with critical points calculated using
TPT are represented as solid lines with black filled circles, and the data from
Monte Carlo simulations are represented as red open circles.55, 68 The coexis-
tence curves are shown in the normalized density (ρσ 3)-normalized potential
strength (βξ ) plane. Note that the (βξ ) axes run downwards. Furthermore,
no simulation data for the fluid–solid and gas–liquid coexistence curves for z
= 5.0 and z = 9.0, respectively, were provided in Refs. 55 and 68.

Before comparing our theoretical and experimental find-
ings, we test the accuracy of our TPT implementation.
No simulated phase diagrams are available for the DLVO
model with our parameter values. However, Monte Carlo
simulations55, 68 have been used to determine the phase dia-
gram of hard spheres interacting via an attractive Yukawa po-
tential,

u(r) =

⎧⎪⎨
⎪⎩

∞ , r < σ

−ξ
exp[−z(r − σ )]

r/σ
, r ≥ σ ,

(23)

where ξ > 0 is the (contact) strength, and z−1 the range of the
attraction.

Using TPT, we calculate the phase diagram of this sys-
tem. The calculated fluid–solid coexistence curves agree with
the simulated ones for all investigated values of z−1 (see
Fig. 8). Also the widths of the gas–liquid coexistence curves
are well reproduced. The calculated gas–liquid binodals, how-
ever, are located slightly above the simulation data. We sup-
pose that the binodals are shifted because the mean-field type
TPT does not account for critical density fluctuations. Critical
fluctuations allow a system to probe density inhomogeneities
and thus tend to stabilize the homogeneous supercritical fluid
phase against phase separation, therefore shifting the critical
point to lower temperatures. A renormalization-group correc-
tion scheme has been derived69 which, according to previous
calculations,70 is expected to flatten the coexistence curves
around the critical point.

2. Experimentally determined phase behavior

We experimentally determined the fluid–solid and gas–
liquid coexistence curves for different contents of added salt
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FIG. 9. Experimental phase diagram of lysozyme solutions with different
added NaCl concentrations, cs, as well as different glycerol and DMSO con-
tents (as indicated), in dependence on the volume fraction, φ, and temper-
ature, T. The open circles, inverted triangles, pentagons, stars, and rotated
triangles indicate the fluid–solid coexistence curves. The open squares, trian-
gles, diamonds, hexagons, and octagons indicate the gas–liquid coexistence
curves. The filled squares, triangles, and diamonds indicate the critical points.

(NaCl), glycerol and DMSO (Fig. 9). For all compositions
explored, the gas–liquid binodals lie within the fluid–solid
coexistence regions and are thus metastable. This is typical
for short-ranged attractive pair potentials.17, 71–73 The binodal
widens rapidly upon cooling at volume fractions φ below the
critical volume fraction φc, while the data for φ > φc suggest
almost flat binodals at volume fractions larger than the crit-
ical point value. Similar shapes of lysozyme binodals were
observed previously.73, 74

The effect of salt on the phase behavior was studied
for 0.7 and 0.9 M NaCl (Figs. 9(a) and 9(b), respectively).
With increasing salt concentration, cs, the fluid–solid and gas–
liquid coexistence curves move to higher temperatures, and
the width of the gas–liquid binodal increases. These find-
ings are consistent with the electrostatic screening by added
salt. Upon increasing cs, the screening length, κ−1, decreases.
Thus the electrostatic repulsion decreases and attraction be-
comes more important. This favors crystals compared to the
fluid phase and also the (metastable) gas–liquid phase sep-
aration compared to a homogeneous fluid. The fluid–solid as
well as the gas–liquid coexistence curves hence shift to higher
temperatures, and the gas–liquid coexistence curve becomes
broader, as experimentally observed.

Upon addition of glycerol and DMSO, both coexistence
curves shift to lower temperatures (see Fig. 9). The shift of
the binodals is more pronounced, which widens the gap be-
tween the two coexistence curves. This trend has been ob-
served before in other systems and is characteristic for a de-
creasing range of attraction17, 55, 75 (Fig. 5). The critical point
is not only shifting to lower temperatures, but also to slightly
lower volume fractions. Considering the quantitative effect on
both curves, we find that the addition of 10 vol.% glycerol and
5 vol.% DMSO induce a similar shift. The higher efficiency of
DMSO is consistent with its more pronounced effect on b2(T)
(Fig. 6).

FIG. 10. Experimental phase diagram of lysozyme solutions with different
added NaCl concentrations, cs, as well as different glycerol and DMSO con-
tents (as indicated), as a function of volume fraction, φ, and reduced second
virial coefficient, b2. The second virial coefficient has been (a) experimen-
tally determined and (b) calculated based on the DLVO model. The filled
symbols indicate the fluid–solid (fs) coexistence curves, the open symbols
the gas–liquid (gl) coexistence curves.

We have investigated the relation between the second
virial coefficient, b2(T), and the location of the fluid–solid
and especially the gas–liquid coexistence curves. For this pur-
pose, we parameterized the temperature dependencies of the
experimentally determined second virial coefficients (Fig. 6)
by the phenomenological relation b2(T) = α0 + α1 T + α2 T2,
where α1 and α2 depend on the composition of the solution.
Using this relation, the binodals are plotted in dependence of
b2 and φ in Fig. 10(a). This representation leads to a collapse
of all binodals onto a single curve, as it has been observed
previously.14, 18, 74, 76 This indicates that in our system the bin-
odals are controlled by b2, i.e., by a single integral parameter
characterizing the potential, and not by the details of the po-
tential, such as its depth and range. By contrast, this scaling of
b2 is not observed for the fluid–solid transition. Nevertheless,
this transition occurs for b2 values consistent with previous
reports.77

If instead the b2 values calculated based on the DLVO
model are used, the fluid–solid and gas–liquid coexistence
curves do not scale (see Fig. 10(b)) and the critical points
are different. This indicates that the scaling very sensitively
depends on the temperature dependence of b2(T) and thus on
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the model. Small errors might be introduced by the simplifica-
tions implicit in the DLVO model. However, the main effect is
due to the extrapolation of b2(T) beyond the available temper-
ature range 10 ◦C < T < 40 ◦C (see Fig. 6), which indicates
the need for a very reliable and robust parameterization of the
temperature dependence of the cut-off length δ(T). To avoid
spurious effects, in the following we scale the temperature and
concentration axes by the critical temperatures and concentra-
tions. This axis scaling also reduces artifacts due to the slight
shift in the binodals caused by the mean-field nature of TPT
(Fig. 8).

3. Comparison of calculated and experimentally
determined phase behavior

The experimental phase diagrams are now compared to
our TPT predictions based on the DLVO model. The axes
are scaled by the critical temperature, Tc, and volume frac-
tion, φc, which matches all theoretical and experimental crit-
ical points (see Fig. 11). (Note that in this representation the
fluid–solid transition shifts to higher T/Tc, in contrast to the

FIG. 11. Experimental and predicted phase diagram of lysozyme solutions
with different added NaCl concentrations, cs, as well as different glycerol
and DMSO contents (as indicated), as a function of reduced volume fraction,
φ/φc, and reduced temperature, T/Tc, where (φc,Tc) defines the critical point.
Solid lines represent the TPT calculations based on the DLVO model, open
symbols the experimental data for the stable fluid– solid (fs) and metastable
gas– liquid (gl) coexistence curves. Filled symbols mark the critical point.

representation using the absolute temperature scale (Fig. 9).
This representation reveals an increase of the gap between the
fluid–solid and the gas–liquid coexistence curves upon addi-
tion of glycerol and DMSO for the experimental data and, less
pronounced, in the range φ/φc < 0.2 for the theoretical pre-
dictions. Note that in the main part of the phase diagram the
theoretically predicted gap actually decreases. In view of the
successful test of the TPT approach (Fig. 8), we attribute this
discrepancy to the inherent approximations of the DLVO po-
tential and in particular to the model for the cut-off length δ.

The width of the gas–liquid coexistence curve is ex-
perimentally found to remain practically unchanged in this
representation when glycerol or DMSO is added, while the-
ory predicts a slight increase of the width. The theoretically
and experimentally observed widths quantitatively agree at
the largest glycerol content of 20 vol.% (Fig. 11). In partic-
ular, our calculations do not reproduce the flat binodal region
around the critical point, which we observe experimentally.
As discussed above (see Fig. 8), this is attributed to the mean-
field character of the theory. This is furthermore consistent
with previous experiments73 and simulations.16 In particular,
similar gas–liquid coexistence curves have been theoretically
observed for colloidal dispersions with competing repulsive
and attractive interactions, and have been attributed to critical
fluctuations which become significant in an enlarged region
of the phase diagram.78

IV. CONCLUSIONS

In a combined theoretical and experimental effort, we in-
vestigated the phase behavior of aqueous lysozyme solutions
in the presence of additives, namely glycerol and DMSO. We
in particular investigated the fluid–solid and gas–liquid coex-
istence curves. Upon the addition of glycerol or DMSO, both
curves shift to lower temperatures and, in addition, the gap be-
tween these two curves increases, consistent with a decreasing
range of attraction upon increasing the content of additives.

Our theoretical calculations are based on a DLVO in-
teraction potential. This models the proteins as hard spheres
with an isotropic electrostatic repulsion, which is caused by,
e.g., uniformly distributed charges, and an isotropic van der
Waals attraction characterized by the (effective) Hamaker
constant and a cut-off length. The Hamaker constant is
calculated based on the experimentally determined, or in
the literature available, macroscopic optical and dielectric
properties of the solvent mixtures and the protein, namely
their indices of refraction and static dielectric constants. The
cut-off length δ was adjusted to reproduce the second virial
coefficient, which was experimentally determined by static
light scattering. We find cut-off lengths in the range 0.15 nm
≤ δ(T) ≤ 0.3 nm, with the value increasing with increasing
temperature and glycerol content and, even more pronounced,
with increasing DMSO content, consistent with previous
studies.27, 28, 52–54 The cut-off length subsumes molecular
effects, such as a hydration shell or condensed counterions
on the protein surface. Our experiments thus indicate that
glycerol and DMSO interact differently with lysozyme.
DMSO seems to affect the lysozyme interactions by mainly
lowering the solvent dielectric constant, while glycerol likely
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changes the hydrophobicity of the lysozyme surface. This is
in accordance with recent computer simulation results.12

Having determined the values of all parameters, we cal-
culated the interaction potential for different temperatures and
compositions, added salt (NaCl) concentrations as well as dif-
ferent glycerol and DMSO contents. We found that glycerol
and DMSO increase the repulsive interaction, as quantified by
the second virial coefficient b2. For a sufficiently high con-
tent of additives, a predominantly repulsive protein interac-
tion is observed. The increase of the repulsion is significantly
stronger for DMSO, although the optical and dielectric prop-
erties of glycerol and DMSO are very similar. We hence at-
tribute this difference to the specific molecular interactions
of the additives with lysozyme, characterized by the cut-off
length δ(T).

Based on the DLVO model and its parameters, we predict
the phase behavior without any free parameters. Our calcu-
lations are based on the TPT, which was successfully tested
and found to be numerically fast. The theoretical predictions
were then compared to our experimental observations, for the
fluid–solid and the gas–fluid coexistence curves. Particular at-
tention was paid to the effect of additives on these curves, and
the size of the gap between them. We find that the general
trends in the phase behavior, and especially the effects of the
additives, are also reproduced by the DLVO model, although
not on a quantitative level.

The strength of the DLVO model lies in its simplic-
ity, for it allows to incorporate the effect of solvent mix-
tures by taking into account their macroscopic optical and di-
electric properties. More complex models are available, but
might need to be adapted to proteins and solvent mixtures
or additives. For example, theoretical calculations based on
anisotropic attractive interactions successfully describe both
the width of the binodal and the gap between the binodal, and
the fluid–solid transition for aqueous protein solutions with-
out additives.60, 79, 80 Anisotropic attractive interactions are in-
deed induced by hydrophobic patches on the lysozyme sur-
face, and have been taken into account in a patchy sphere
model by Curtis et al.81 Anisotropic attractions as well as
repulsions, e.g., as due to an anisotropic charge distribu-
tion or van der Waals interaction, are not taken into account
in our DLVO model. Our model furthermore neglects non-
electrostatic contributions to the lysozyme pair potential that
originate from dispersion forces between the micro-ions and
proteins.58, 59 The range and strength of such non-electrostatic
and hydrophobic interactions has not been determined exper-
imentally, and hence cannot be taken into account unambigu-
ously, e.g., through an effective potential of mean force. Fur-
thermore, hydrophobic interactions, as well as non-rigid and
non-spherical shapes, specific surface properties, ion-specific
interactions, hydration, and other effects need to be explored
in future studies.
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