294 research outputs found

    A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern

    Get PDF
    Production of haploid gametes from diploid progenitor cells is mediated by a specialized cell division, meiosis, where two divisions, meiosis I and II, follow a single S phase. Errors in progression from meiosis I to meiosis II lead to aneuploid and polyploid gametes, but the regulatory mechanisms controlling this transition are poorly understood. Here, we demonstrate that the conserved kinase Ime2 regulates the timing and order of the meiotic divisions by controlling translation. Ime2 coordinates translational activation of a cluster of genes at the meiosis I–meiosis II transition, including the critical determinant of the meiotic chromosome segregation pattern CLB3. We further show that Ime2 mediates translational control through the meiosis-specific RNA-binding protein Rim4. Rim4 inhibits translation of CLB3 during meiosis I by interacting with the 5′ untranslated region (UTR) of CLB3. At the onset of meiosis II, Ime2 kinase activity rises and triggers a decrease in Rim4 protein levels, thereby alleviating translational repression. Our results elucidate a novel developmentally regulated translational control pathway that establishes the meiotic chromosome segregation pattern.American Cancer Society (Post-doctoral Fellowship)Virginia and D.K. Ludwig Fund for Cancer Research (Post-doctoral Fellowship)National Institutes of Health (U.S.) (Grant GM62207

    The effect of the electric field on lag phase, β-galactosidase production and plasmid stability of a recombinant Saccharomyces cerevisiae strain growing on lactose

    Get PDF
    Ethanol and β-galactosidase production from cheese whey may significantly contribute to minimise environmental problems while producing value from lowcost raw materials. In this work, the recombinant Saccharomyces cerevisiae NCYC869-A3/pVK1.1 flocculent strain expressing the lacA gene (coding for β-galactosidase) of Aspergillus niger under ADHI promoter and terminator was used. This strain shows high ethanol and β-galactosidase productivities when grown on lactose. Batch cultures were performed using SSlactose medium with 50 gL−1 lactose in a 2-L bioreactor under aerobic and microaerophilic conditions. Temperature was maintained at 30 °C and pH 4.0. In order to determine the effect of an electric field in the fermentation profile, titanium electrodes were placed inside the bioreactor and different electric field values (from 0.5 to 2 Vcm−1) were applied. For all experiments, β-galactosidase activity, biomass, protein, lactose, glucose, galactose and ethanol concentrations were measured. Finally, lag phase duration and specific growth rate were calculated. Significant changes in lag phase duration and biomass yield were found when using 2 Vcm−1. Results show that the electric field enhances the early stages of fermentation kinetics, thus indicating that its application may improve industrial fermentations’ productivity. The increase in electric field intensity led to plasmid instability thus decreasing β-galactosidase production.The authors gratefully acknowledge Fundacao para a Ciencia e a Tecnologia (Portugal) for the scholarships SFRH/BD/11230/2002 and SFRH/BDP/63831/2009 granted to authors I. Castro and C. Oliveira, respectively

    Views and experiences of people with intellectual disabilities regarding intimate relationships: a qualitative metasynthesis

    Get PDF
    The aims of this review were to systematically identify, critically appraise and synthesize the results of existing qualitative literature exploring the views and experiences of intimate relationships amongst people with intellectual disabilities. Fourteen peer-reviewed articles were identified through a systematic search of eight databases, reference lists, citations, and relevant journals. The identified articles were appraised for quality, then synthesized using a metaethnography approach. No study met all quality criteria and references to ethical approval were often lacking. Interpretation of the findings suggested three key themes: the meaning of intimate relationships, external constraints and facilitators, and managing external constraints. Though many people with intellectual disabilities desire and benefit from intimate relationships, they experience restrictions that others do not, which can lead to isolation and loneliness. Intimate relationships are not always necessarily linked with sexual behavior; therefore, intimate relationships warrant their own focus in future research, as well as in education and training for people with intellectual disabilities and their caregivers. Within this, a commitment to transparency over research processes is needed, in particular with reference to how ethical approval was obtained, since this has been a shortcoming of research with this focus to date

    Photobacterium profundum under Pressure:A MS-Based Label-Free Quantitative Proteomics Study

    Get PDF
    Photobacterium profundum SS9 is a Gram-negative bacterium, originally collected from the Sulu Sea. Its genome consists of two chromosomes and a 80 kb plasmid. Although it can grow under a wide range of pressures, P. profundum grows optimally at 28 MPa and 15°C. Its ability to grow at atmospheric pressure allows for both easy genetic manipulation and culture, making it a model organism to study piezophily. Here, we report a shotgun proteomic analysis of P. profundum grown at atmospheric compared to high pressure using label-free quantitation and mass spectrometry analysis. We have identified differentially expressed proteins involved in high pressure adaptation, which have been previously reported using other methods. Proteins involved in key metabolic pathways were also identified as being differentially expressed. Proteins involved in the glycolysis/gluconeogenesis pathway were up-regulated at high pressure. Conversely, several proteins involved in the oxidative phosphorylation pathway were up-regulated at atmospheric pressure. Some of the proteins that were differentially identified are regulated directly in response to the physical impact of pressure. The expression of some proteins involved in nutrient transport or assimilation, are likely to be directly regulated by pressure. In a natural environment, different hydrostatic pressures represent distinct ecosystems with their own particular nutrient limitations and abundances. However, the only variable considered in this study was atmospheric pressure

    Estrogen Receptor Alpha Is Expressed in Mesenteric Mesothelial Cells and Is Internalized in Caveolae upon Freund's Adjuvant Treatment

    Get PDF
    Transformation of epithelial cells into connective tissue cells (epithelial-mesenchymal transition, EMT) is a complex mechanism involved in tumor metastasis, and in normal embryogenesis, while type II EMT is mainly associated with inflammatory events and tissue regenaration. In this study we examined type II EMT at the ultrastructural and molecular level during the inflammatory process induced by Freund's adjuvant treatment in rat mesenteric mesothelial cells. We found that upon the inflammatory stimulus mesothelial cells lost contact with the basal lamina and with each other, and were transformed into spindle-shaped cells. These morphological changes were accompanied by release of interleukins IL-1alpha, -1beta and IL-6 and by secretion of transforming growth factor beta (TGF-beta) into the peritoneal cavity. Mesothelial cells also expressed estrogen receptor alpha (ER-alpha) as shown by immunolabeling at the light and electron microscopical levels, as well as by quantitative RT-PCR. The mRNA level of ER-alpha showed an inverse correlation with the secretion of TGF-beta. At the cellular and subcellular levels ER-alpha was colocalized with the coat protein caveolin-1 and was found in the plasma membrane of mesothelial cells, in caveolae close to multivesicular bodies (MVBs) or in the membrane of these organelles, suggesting that ER-alpha is internalized via caveola-mediated endocytosis during inflammation. We found asymmetric, thickened, electron dense areas on the limiting membrane of MVBs (MVB plaques) indicating that these sites may serve as platforms for collecting and organizing regulatory proteins. Our morphological observations and biochemical data can contribute to form a potential model whereby ER-alpha and its caveola-mediated endocytosis might play role in TGF-beta induced type II EMT in vivo

    Whi3 binds the mRNA of the G(1) cyclin CLN3 to modulate cell fate in budding yeast

    Get PDF
    Eukaryotic cells commit in G(1) to a new mitotic cycle or to diverse differentiation processes. Here we show that Whi3 is a negative regulator of Cln3, a G(1) cyclin that promotes transcription of many genes to trigger the G(1)/S transition in budding yeast. Whi3 contains an RNA-recognition motif that specifically binds the CLN3 mRNA, with no obvious effects on Cln3 levels, and localizes the CLN3 mRNA into discrete cytoplasmic foci. This is the first indication that G(1) events may be regulated by locally restricting the synthesis of a cyclin. Moreover, Whi3 is also required for restraining Cln3 function in meiosis, filamentation, and mating, thus playing a key role in cell fate determination in budding yeast

    Relative Codon Adaptation: A Generic Codon Bias Index for Prediction of Gene Expression

    Get PDF
    The development of codon bias indices (CBIs) remains an active field of research due to their myriad applications in computational biology. Recently, the relative codon usage bias (RCBS) was introduced as a novel CBI able to estimate codon bias without using a reference set. The results of this new index when applied to Escherichia coli and Saccharomyces cerevisiae led the authors of the original publications to conclude that natural selection favours higher expression and enhanced codon usage optimization in short genes. Here, we show that this conclusion was flawed and based on the systematic oversight of an intrinsic bias for short sequences in the RCBS index and of biases in the small data sets used for validation in E. coli. Furthermore, we reveal that how the RCBS can be corrected to produce useful results and how its underlying principle, which we here term relative codon adaptation (RCA), can be made into a powerful reference-set-based index that directly takes into account the genomic base composition. Finally, we show that RCA outperforms the codon adaptation index (CAI) as a predictor of gene expression when operating on the CAI reference set and that this improvement is significantly larger when analysing genomes with high mutational bias

    FLPe functions in zebrafish embryos

    Get PDF
    To assay the efficiency of the FLP/FRT site-specific recombination system in Danio rerio, a construct consisting of a muscle-specific promoter driving EGFP flanked by FRT sites was developed. FLPe capped RNA was microinjected into transgenic single cell stage zebrafish embryos obtained by crossing hemizygous transgenic males with wild-type females. By 48 h post fertilization (hpf), the proportion of embryos displaying green fluorescence following FLPe RNA microinjection was significantly lower (7.7%; P < 0.001) than would be expected from a cross in the absence of the recombinase (50%). Embryos that retained fluorescence displayed marked mosaicism. Inheritance of the excised transgene in non-fluorescent, transgenic embryos was verified by PCR analysis and FLPe-mediated recombination was confirmed by DNA sequencing. Sperm derived from confirmed transgenic males in these experiments was used to fertilize wild-type eggs to determine whether germline excision of the transgene had occurred. Clutches sired by FLPe-microinjected males contained 0–4% fluorescent embryos. Transgenic males that were phenotypically wild-type produced no fluorescent progeny, demonstrating complete excision of the transgene from their germline. FLPe microinjected males that retained some fluorescent muscle expression produced a small proportion of fluorescent offspring, suggesting that in mosaic males not all germline cells had undergone FLPe-mediated transgene excision. Our results show that FLPe, which is derived from Saccharomyces cerevisiae, is an efficient recombinase in zebrafish maintained at 28.5°C
    corecore