96 research outputs found
Analysis of Foraging Behavior of Cattle Using a Wearable Camera under Diverse Vegetation
Although it is important to estimate the ingested plant species and the amount of forage intake by grazing animals, recording these items at the 1-bite scale has been difficult under diverse vegetation. Recent research confirmed that a small and inexpensive wearable camera is useful to determine ingested plant species and their proportion in total bites with high accuracy. In this study, we attempted to generate bite codes for cattle under diverse vegetation using wearable cameras. We used two cows which had a grazing experience in the previous year (GE) and the other two which had no grazing experience (NE). They grazed on a mountainous area (3 ha of sown pasture and 17 ha of forest) from late spring to mid-summer. A wearable camera (Panasonic HX-A500, 185 g) was fixed on the right cheek of the cows. Foraging behavior was continuously recorded for 120 min during morning foraging bouts, and direct observation was also conducted simultaneously. Bite codes were generated based on the morphological characteristics of ingested plants and the characteristics of foraging manner of the cows. Bite codes were classified into A (\u3e 100 cm), B (100–60 cm), and C (\u3c 60 cm) based on foraging height, then further classified into 5 types in A, 4 types in B, and 16 types in C (total 25 types) based on the differences in feeding manner. NE cows showed more frequent occurrence of the codes with low bite size than GE cows when foraging at a height of B in immediately after the start of grazing season. The results suggest that bite codes reflect bite size and thus can provide a precise understanding of their foraging behavior. It was also suggested that changes in bite codes due to the accumulation of grazing experience may affect foraging efficiency of grazing cattle
Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, \u3cem\u3eBombyx mori\u3c/em\u3e
Pigmentation patterning has long interested biologists, integrating topics in ecology, development, genetics, and physiology. Wild-type neonatal larvae of the silkworm, Bombyx mori, are completely black. By contrast, the epidermis and head of larvae of the homozygous recessive sex-linked chocolate (sch) mutant are reddish brown. When incubated at 30 °C, mutants with the sch allele fail to hatch; moreover, homozygous mutants carrying the allele sch lethal (schl) do not hatch even at room temperature (25 °C). By positional cloning, we narrowed a region containing sch to 239,622 bp on chromosome 1 using 4,501 backcross (BC1) individuals. Based on expression analyses, the best sch candidate gene was shown to be tyrosine hydroxylase (BmTh). BmTh coding sequences were identical among sch, schl, and wild-type. However, in sch the ∼70-kb sequence was replaced with ∼4.6 kb of a Tc1-mariner type transposon located ∼6 kb upstream of BmTh, and in schl, a large fragment of an L1Bm retrotransposon was inserted just in front of the transcription start site of BmTh. In both cases, we observed a drastic reduction of BmTh expression. Use of RNAi with BmTh prevented pigmentation and hatching, and feeding of a tyrosine hydroxylase inhibitor also suppressed larval pigmentation in the wild-type strain, pnd+ and in a pS (black-striped) heterozygote. Feeding L-dopa to sch neonate larvae rescued the mutant phenotype from chocolate to black. Our results indicate the BmTh gene is responsible for the sch mutation, which plays an important role in melanin synthesis producing neonatal larval color
A Reversible Color Polyphenism in American Peppered Moth (Biston betularia cognataria) Caterpillars
Insect body color polyphenisms enhance survival by producing crypsis in diverse backgrounds. While color polyphenisms are often indirectly induced by temperature, rearing density, or diet, insects can benefit from immediate crypsis if they evolve polyphenisms directly induced by exposure to the background color, hence immediately deriving protection from predation. Here, we examine such a directly induced color polyphenism in caterpillars of the geometrid peppered moth (Biston betularia). This larval color polyphenism is unrelated to the genetic polymorphism for melanic phenotypes in adult moths. B. betularia caterpillars are generalist feeders and develop body colors that closely match the brown or green twigs of their host plant. We expand on previous studies examining the proximal cues that stimulate color development. Under controlled rearing conditions, we manipulated diets and background reflectance, using both natural and artificial twigs, and show that visual experience has a much stronger effect than does diet in promoting precise color matching. Their induced body color was not a simple response to reflectance or light intensity but instead specifically matched the wavelength of light to which they were exposed. We also show that the potential to change color is retained until the final (sixth) larval instar. Given their broad host range, this directly induced color polyphenism likely provides the caterpillars with strong protection from bird predation
Transposable-Element Associated Small RNAs in Bombyx mori Genome
Small RNAs are a group of regulatory RNA molecules that control gene expression at transcriptional or post-transcriptional levels among eukaryotes. The silkworm, Bombyx mori L., genome harbors abundant repetitive sequences derived from families of retrotransposons and transposons, which together constitute almost half of the genome space and provide ample resource for biogenesis of the three major small RNA families. We systematically discovered transposable-element (TE)-associated small RNAs in B. mori genome based on a deep RNA-sequencing strategy and the effort yielded 182, 788 and 4,990 TE-associated small RNAs in the miRNA, siRNA and piRNA species, respectively. Our analysis suggested that the three small RNA species preferentially associate with different TEs to create sequence and functional diversity, and we also show evidence that a Bombyx non-LTR retrotransposon, bm1645, alone contributes to the generation of TE-associated small RNAs in a very significant way. The fact that bm1645-associated small RNAs partially overlap with each other implies a possibility that this element may be modulated by different mechanisms to generate different products with diverse functions. Taken together, these discoveries expand the small RNA pool in B. mori genome and lead to new knowledge on the diversity and functional significance of TE-associated small RNAs
A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest
Genome of Diuraphis noxia, a global aphid pest of small grains
Background: The Russian wheat aphid, Diuraphis noxia Kurdjumov, is one of the most important pests of small grains throughout the temperate regions of the world. This phytotoxic aphid causes severe systemic damage symptoms in wheat, barley, and other small grains as a direct result of the salivary proteins it injects into the plant while feeding.Results: We sequenced and de novo assembled the genome of D. noxia Biotype 2, the strain most virulent to resistance genes in wheat. The assembled genomic scaffolds span 393 MB, equivalent to 93% of its 421 MB genome, and contains 19,097 genes. D. noxia has the most AT-rich insect genome sequenced to date (70.9%), with a bimodal CpG(O/E) distribution and a complete set of methylation related genes. The D. noxia genome displays a widespread, extensive reduction in the number of genes per ortholog group, including defensive, detoxification, chemosensory, and sugar transporter groups in comparison to the Acyrthosiphon pisum genome, including a 65% reduction in chemoreceptor genes. Thirty of 34 known D. noxia salivary genes were found in this assembly. These genes exhibited less homology with those salivary genes commonly expressed in insect saliva, such as glucose dehydrogenase and trehalase, yet greater conservation among genes that are expressed in D. noxia saliva but not detected in the saliva of other insects. Genes involved in insecticide activity and endosymbiont-derived genes were also found, as well as genes involved in virus transmission, although D. noxia is not a viral vector.Conclusions: This genome is the second sequenced aphid genome, and the first of a phytotoxic insect. D. noxia's reduced gene content of may reflect the influence of phytotoxic feeding in shaping the D. noxia genome, and in turn in broadening its host range. The presence of methylation-related genes, including cytosine methylation, is consistent with other parthenogenetic and polyphenic insects. The D. noxia genome will provide an important contrast to the A. pisum genome and advance functional and comparative genomics of insects and other organisms.Peer reviewedBiochemistry and Molecular Biolog
- …