375 research outputs found

    Superstorm Sandy: Lessons for Optimizing Limited Training Resources for Local Impact

    Get PDF
    Professional training development, whether for a classroom, work environment, or other setting, typically follows a validated instructional design model that includes an assessment of learner needs before the development of a training. This foundational principle is integrated into federal guidance documents for emergency preparedness training. That said, local preparedness resources are sometimes in misalignment with this principle. Funding tends to favor nationally defined priorities as a proxy for the assessment of local needs. This letter explores this dynamic in the context of the response to Superstorm Sandy, and proposes a revised funding paradigm to support training development

    Not In Our Backyard: Spectroscopic Support for the CLASH z=11 Candidate MACS0647-JD

    Get PDF
    We report on our first set of spectroscopic Hubble Space Telescope observations of the z~11 candidate galaxy strongly lensed by the MACSJ0647.7+7015 galaxy cluster. The three lensed images are faint and we show that these early slitless grism observations are of sufficient depth to investigate whether this high-redshift candidate, identified by its strong photometric break at ~1.5 micron, could possibly be an emission line galaxy at a much lower redshift. While such an interloper would imply the existence of a rather peculiar object, we show here that such strong emission lines would clearly have been detected. Comparing realistic, two-dimensional simulations to these new observations we would expect the necessary emission lines to be detected at >5 sigma while we see no evidence for such lines in the dispersed data of any of the three lensed images. We therefore exclude that this object could be a low redshift emission line interloper, which significantly increases the likelihood of this candidate being a bona fide z~11 galaxy.Comment: 14 Pages. 6 Figures. 2nd revised version. Accepted. To appear in ApJ. Please contact [email protected] for comments on this pape

    Hominids adapted to metabolize ethanol long before human-directed fermentation

    Get PDF
    Paleogenetics is an emerging field that resurrects ancestral proteins from now-extinct organisms to test, in the laboratory, models of protein function based on natural history and Darwinian evolution. Here, we resurrect digestive alcohol dehydrogenases (ADH4) from our primate ancestors to explore the history of primate-ethanol interactions. The evolving catalytic properties of these resurrected enzymes show that our ape ancestors gained a digestive dehydrogenase enzyme capable of metabolizing ethanol near the time that they began using the forest floor, about 10 million y ago. The ADH4 enzyme in our more ancient and arboreal ancestors did not efficiently oxidize ethanol. This change suggests that exposure to dietary sources of ethanol increased in hominids during the early stages of our adaptation to a terrestrial lifestyle. Because fruit collected from the forest floor is expected to contain higher concentrations of fermenting yeast and ethanol than similar fruits hanging on trees, this transition may also be the first time our ancestors were exposed to (and adapted to) substantial amounts of dietary ethanol

    Early Results from GLASS-JWST. VIII. An Extremely Magnified Blue Supergiant Star at Redshift 2.65 in the A2744 Cluster Field

    Get PDF
    We report the discovery of an extremely magnified star at redshift z = 2.65 in the James Webb Space Telescope (JWST) NIRISS pre-imaging of the A2744 galaxy-cluster field. The star's background host galaxy lies on a fold caustic of the foreground lens, and the cluster creates a pair of images of the region close to the lensed star. We identified the bright transient in one of the merging images at a distance of similar to 0.'' 15 from the critical curve by subtracting the JWST F115W and F150W imaging from coadditions of archival Hubble Space Telescope (HST) F105W and F125W images and F140W and F160W images, respectively. Since the time delay between the two images should be only hours, the transient must be the microlensing event of an individual star, as opposed to a luminous stellar explosion that would persist for days to months. Analysis of individual exposures suggests that the star's magnification is not changing rapidly during the observations. From photometry of the point source through the F115W, F150W, and F200W filters, we identify a strong Balmer break, and modeling allows us to constrain the star's temperature to be approximately 7000-12,000 K.This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with program JWST-ERS-1324. The specific observations analyzed can be accessed via 10.17909/y6dh-6g16. We acknowledge financial support from NASA through grant JWST-ERS-1324. Archival images from the Hubble Space Telescope were also used. We would like to thank Dr. Pietro Bergamini, Prof. Piero Rosati, Prof. Claudio Grillo, Dr. Ana Acebron, and Dr. Eros Vanzella for their helpful comments on our paper and for sharing the predictions of their lens model.W.C. acknowledges support from NASA HST grant AR-15791. P.L.K. is supported by NSF grant AST-1908823 and NASA/Keck JPL RSA 1644110. R.A.W. acknowledges support from NASA JWST Interdisciplinary Scientist grants NAG5-12460, NNX14AN10G, and 80NSSC18K0200 from GSFC. J.M.D. acknowledges the support of project PGC2018-101814-B-100 (MCIU/AEI/MINECO/FEDER, UE) Ministerio de Ciencia, Investigacion y Universidades. This project was funded by the Agencia Estatal de Investigacion, Unidad de Excelencia Maria de Maeztu, ref. MDM-2017-0765. A.K. is supported by scientist grants NAG5-12460, NNX14AN10G, and 80NSSC18K0200 from GSFC. A.Z. and A.K.M. acknowledge support by Grant No. 2020750 from the United States-Israel Binational Science Foundation (BSF) and grant No. 2109066 from the United States National Science Foundation (NSF), and by the Ministry of Science & Technology, Israel. M.B. acknowledges support from the Slovenian national research agency ARRS through grant N1-0238

    Spectroscopic Observations and Analysis of the Unusual Type Ia SN 1999ac

    Full text link
    We present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. Prior to B-band maximum, the spectra resemble those of SN 1999aa, a slowly declining event, but possess stronger SiII and CaII signatures (more characteristic of a spectroscopically normal SN). Spectra after B-band maximum appear more normal. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from SiII are among the slowest ever observed, though SN 1999ac is not particularly dim. The analysis of the parameters v_10, R(SiII), dv(SiII)/dt, and d_m15 further underlines the unique characteristics of SN 1999ac. We find convincing evidence of CII 6580 in the day -15 spectrum with ejection velocity v > 16,000 km/s, but this signature disappears by day -9. This rapid evolution at early times highlights the importance of extremely early-time spectroscopy.Comment: 40 pages, 24 figures, accepted for publication in The Astronomical Journa

    Wireless Stimulation of Antennal Muscles in Freely Flying Hawkmoths Leads to Flight Path Changes

    Get PDF
    Insect antennae are sensory organs involved in a variety of behaviors, sensing many different stimulus modalities. As mechanosensors, they are crucial for flight control in the hawkmoth Manduca sexta. One of their roles is to mediate compensatory reflexes of the abdomen in response to rotations of the body in the pitch axis. Abdominal motions, in turn, are a component of the steering mechanism for flying insects. Using a radio controlled, programmable, miniature stimulator, we show that ultra-low-current electrical stimulation of antennal muscles in freely-flying hawkmoths leads to repeatable, transient changes in the animals' pitch angle, as well as less predictable changes in flight speed and flight altitude. We postulate that by deflecting the antennae we indirectly stimulate mechanoreceptors at the base, which drive compensatory reflexes leading to changes in pitch attitude.United States. Defense Advanced Research Projects Agenc
    • …
    corecore