1,549 research outputs found

    Conformational Temperature-Dependent Behavior of a Histone H2AX: A Coarse-Grained Monte Carlo Approach Via Knowledge-Based Interaction Potentials

    Get PDF
    Histone proteins are not only important due to their vital role in cellular processes such as DNA compaction, replication and repair but also show intriguing structural properties that might be exploited for bioengineering purposes such as the development of nano-materials. Based on their biological and technological implications, it is interesting to investigate the structural properties of proteins as a function of temperature. In this work, we study the spatial response dynamics of the histone H2AX, consisting of 143 residues, by a coarse-grained bond fluctuating model for a broad range of normalized temperatures. A knowledge-based interaction matrix is used as input for the residue-residue Lennard-Jones potential. A knowledge-based interaction matrix is used as input for the residue-residue Lennard-Jones potential. We find a variety of equilibrium structures including global globular configurations at low normalized temperature (T* = 0.014), combination of segmental globules and elongated chains (T* = 0.016,0.017), predominantly elongated chains (T* = 0.019,0.020), as well as universal SAW conformations at high normalized temperature (T* ≥= 0.023). The radius of gyration of the protein exhibits a non-monotonic temperature dependence with a maximum at a characteristic temperature (T-c* = 0.019) where a crossover occurs from a positive (stretching at T*≤T*c) thermal response on increasing T*

    Quality of care for children with severe disease in the Democratic Republic of the Congo

    Get PDF
    BACKGROUND: Despite the almost universal adoption of Integrated Management of Childhood Illness (IMCI) guidelines for the diagnosis and treatment of sick children under the age of five in low- and middle-income countries, child mortality remains high in many settings. One possible explanation of the continued high mortality burden is lack of compliance with diagnostic and treatment protocols. We test this hypothesis in a sample of children with severe illness in the Democratic Republic of the Congo (DRC). METHODS: One thousand one hundred eighty under-five clinical visits were observed across a regionally representative sample of 321 facilities in the DRC. Based on a detailed list of disease symptoms observed, patients with severe febrile disease (including malaria), severe pneumonia, and severe dehydration were identified. For all three disease categories, treatments were then compared to recommended case management following IMCI guidelines. RESULTS: Out of 1180 under-five consultations observed, 332 patients (28%) had signs of severe febrile disease, 189 patients (16%) had signs of severe pneumonia, and 19 patients (2%) had signs of severe dehydration. Overall, providers gave the IMCI-recommended treatment in 42% of cases of these three severe diseases. Less than 15% of children with severe disease were recommended to receive in-patient care either in the facility they visited or in a higher-level facility. CONCLUSIONS: These results suggest that adherence to IMCI protocols for severe disease remains remarkably low in the DRC. There is a critical need to identify and implement effective approaches for improving the quality of care for severely ill children in settings with high child mortality

    The significance of nitrogen fixation to new production during early summer in the Baltic Sea.

    Get PDF
    Rates of dinitrogen (N2) fixation and primary production were measured during two 9 day transect cruises in the Baltic proper in June–July of 1998 and 1999. Assuming that the early phase of the bloom of cyanobacteria lasted a month, total rates of N2 fixation contributed 15 mmol N m−2 (1998) and 33 mmol N m−2 (1999) to new production (sensu Dugdale and Goering, 1967). This constitutes 12–26% more new N than other annual estimates (mid July–mid October) from the same region. The between-station variability observed in both total N2 fixation and primary productivity greatly emphasizes the need for multiple stations and seasonal sampling strategies in biogeochemical studies of the Baltic Sea. The majority of new N from N2 fixation was contributed by filamentous cyanobacteria. On average, cyanobacterial cells >20 µm were able to supply a major part of their N requirements for growth by N2 fixation in both 1998 (73%) and 1999 (81%). The between-station variability was high however, and ranged from 28–150% of N needed to meet the rate of C incorporation by primary production. The molar C:N rate incorporation ratio (C:NRATE) in filamentous cyanobacterial cells was variable (range 7–28) and the average almost twice as high as the Redfield ratio (6.6) in both years. Since the molar C:N mass ratio (C:NMASS) in filamentous cyanobacterial cells was generally lower than C:NRATE at a number of stations, we suggest that the diazotrophs incorporated excess C on a short term basis (carbohydrate ballasting and buoyancy regulation), released nitrogen or utilized other regenerated sources of N nutrients. Measured rates of total N2 fixation contributed only a minor fraction of 13% (range 4–24) in 1998 and 18% (range 2–45) in 1999 to the amount of N needed for the community primary production. An average of 9 and 15% of total N2 fixation was found in cells <5 µm. Since cells <5 µm did not show any detectable rates of N2 fixation, the 15N-enrichment could be attributed to regenerated incorporation of dissolved organic N (DON) and ammonium generated from larger diazotroph cyanobacteria. Therefore, N excretion from filamentous cyanobacteria may significantly contribute to the pool of regenerated nutrients used by the non-diazotroph community in summer. Higher average concentrations of regenerated N (ammonium) coincided with higher rates of N2 fixation found during the 1999 transect and a higher level of 15N-enrichment in cells <5 µm. A variable but significant fraction of total N2 fixation (1–10%) could be attributed to diazotrophy in cells between 5–20 µm

    Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland

    Get PDF
    Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon (R) dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 +/- 8 ng g(-1), average SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, alpha = 0.05). Even though the correlation between the Teflon DFC and Aero-DFC was significant (r = 0.76, p &lt; 0.05) the cumulative flux of the Aero-DFC was a factor of three larger. The average flux of the Aero-DFC (1.9 ng m(-2) h(-1)) and REA (2 ng m(-2) h(-1)) were in good agreement. The results indicate that the novel REA design is in agreement for cumulative flux estimates with the Aero-DFC, which incorporates the effect of atmospheric turbulence. The comparison was performed over a fetch with spatially rather homogenous GEM flux dynamics under fairly consistent weather conditions, minimizing the effect of weather influence on the data from the three measurement systems. However, in complex biomes with heterogeneous surface characteristics where there can be large spatial variability in GEM gas exchange, the small footprint of chambers ( &lt; 0.2 m(2)) makes for large coefficients of variation. Thus many chamber measurement replications are needed to establish a credible biome GEM flux estimate, even for a single point in time. Dynamic flux chambers will, however, be able to resolve systematic differences between small scale features, such as experimentally manipulated plots or small scale spatial heterogeneity

    An immediate-late gene expression module decodes ERK signal duration

    Get PDF
    The RAF-MEK-ERK signalling pathway controls fundamental, often opposing cellular processes such as proliferation and apoptosis. Signal duration has been identified to play a decisive role in these cell fate decisions. However, it remains unclear how the different early and late responding gene expression modules can discriminate short and long signals. We obtained both protein phosphorylation and gene expression time course data from HEK293 cells carrying an inducible construct of the proto-oncogene RAF By mathematical modelling, we identified a new gene expression module of immediate-late genes (ILGs) distinct in gene expression dynamics and function. We find that mRNA longevity enables these ILGs to respond late and thus translate ERK signal duration into response amplitude. Despite their late response, their GC-rich promoter structure suggested and metabolic labelling with 4SU confirmed that transcription of ILGs is induced immediately. A comparative analysis shows that the principle of duration decoding is conserved in PC12 cells and MCF7 cells, two paradigm cell systems for ERK signal duration. Altogether, our findings suggest that ILGs function as a gene expression module to decode ERK signal duration

    Magneto-Coulomb Oscillation in Ferromagnetic Single Electron Transistors

    Full text link
    The mechanism of the magneto-Coulomb oscillation in ferromagnetic single electron transistors (SET's) is theoretically considered. Variations in the chemical potentials of the conduction electrons in the ferromagnetic island electrode and the ferromagnetic lead electrodes in magnetic fields cause changes in the free energy of the island electrode of the SET. Experimental results of the magneto-Coulomb oscillation in a Ni/Co/Ni ferromagnetic SET are presented and discussed. Possible applications of this phenomenon are also discussed.Comment: 24 pages Latex, 5 figures in GIF files, style files included. Revised version: some errors are corrected and further discussions are added. To be published in J. Phys. Soc. Jpn. Vol.67 (1998) No.
    corecore