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Abstract. Rates of dinitrogen (N2) fixation and primary pro-
duction were measured during two 9 day transect cruises in
the Baltic proper in June–July of 1998 and 1999. Assuming
that the early phase of the bloom of cyanobacteria lasted a
month, total rates of N2 fixation contributed 15 mmol N m−2

(1998) and 33 mmol N m−2 (1999) to new production (sensu
Dugdale and Goering, 1967). This constitutes 12–26% more
new N than other annual estimates (mid July–mid Octo-
ber) from the same region. The between-station variabil-
ity observed in both total N2 fixation and primary produc-
tivity greatly emphasizes the need for multiple stations and
seasonal sampling strategies in biogeochemical studies of
the Baltic Sea. The majority of new N from N2 fixation
was contributed by filamentous cyanobacteria. On average,
cyanobacterial cells>20µm were able to supply a major part
of their N requirements for growth by N2 fixation in both
1998 (73%) and 1999 (81%). The between-station variability
was high however, and ranged from 28–150% of N needed
to meet the rate of C incorporation by primary production.
The molar C:N rate incorporation ratio (C:NRATE) in fila-
mentous cyanobacterial cells was variable (range 7–28) and
the average almost twice as high as the Redfield ratio (6.6)
in both years. Since the molar C:N mass ratio (C:NMASS)

in filamentous cyanobacterial cells was generally lower than
C:NRATE at a number of stations, we suggest that the dia-
zotrophs incorporated excess C on a short term basis (car-
bohydrate ballasting and buoyancy regulation), released ni-
trogen or utilized other regenerated sources of N nutrients.
Measured rates of total N2 fixation contributed only a mi-
nor fraction of 13% (range 4–24) in 1998 and 18% (range
2–45) in 1999 to the amount of N needed for the community
primary production. An average of 9 and 15% of total N2 fix-
ation was found in cells<5µm. Since cells<5µm did not
show any detectable rates of N2 fixation, the15N-enrichment
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could be attributed to regenerated incorporation of dissolved
organic N (DON) and ammonium generated from larger dia-
zotroph cyanobacteria. Therefore, N excretion from filamen-
tous cyanobacteria may significantly contribute to the pool
of regenerated nutrients used by the non-diazotroph commu-
nity in summer. Higher average concentrations of regener-
ated N (ammonium) coincided with higher rates of N2 fix-
ation found during the 1999 transect and a higher level of
15N-enrichment in cells<5µm. A variable but significant
fraction of total N2 fixation (1–10%) could be attributed to
diazotrophy in cells between 5–20µm.

1 Introduction

Surface blooms of filamentous diazotrophic cyanobacteria
are well documented and a recurring phenomenon in the
Baltic Sea in summer (cf. Leppänen et al., 1988). Due to
their ability to fix N2, diazotroph cyanobacteria may con-
tribute significantly to the input of new N to the Baltic Sea
ecosystem. The contribution of this source of new N has been
subject of a number of investigations (e.g. Rinne et al., 1978;
Lepp̈anen et al., 1988; Rahm et al., 2000; Larsson et al.,
2001; Wasmund et al., 2001). Our current knowledge may
suggest large-scale regional differences in the abundance of
the most common filamentous cyanobacteria in the Baltic
Sea,Aphanizomenonsp. andNodularia sp. (Kahru et al.,
1994; Wasmund, 1997). During peak abundance in summer,
maximum biomass of the filamentous cyanobacteria can be
found in the southern and eastern parts of the Baltic proper
(Niemisẗo et al., 1989). Although the filamentous cyanobac-
teria rarely dominate the autotroph community, conspicuous
surface accumulations of the buoyant diazotrophs may con-
gregate in wind and current driven rows or patches in coastal
and offshore waters of the Baltic Sea (Niemistö et al., 1989;
Walsby et al., 1995). Larsson et al. (2001) clearly demon-
strated the great extent of inter-annual variability in timing
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Figure 1

Fig. 1. Map of the Baltic Sea showing the cruise tracks in 1998
(open circles, S-N) and 1999 (closed circles, N-S). Location of the
drift station experiment in 1998 (larger open circle; stations 12–14)
is also shown.

and total abundance of filamentous cyanobacteria at an off-
shore station in the Baltic Sea. A similar spatial and tem-
poral variability in measured rates of N2 fixation during the
growth season of diazotrophic cyanobacteria has been found
by Ohlendieck et al. (2000) and Wasmund et al. (2001).

The earliest estimates of N2 fixation in the Baltic Sea were
based on the acetylene-reduction method. Plankton samples
were routinely concentrated in net-tows or by a screen from
natural seawater. Due to this pre-treatment of the samples,
the enrichment method may have excluded or even physio-
logically disturbed certain plankton groups and hence, un-
derestimated total rates of N2 fixation to the Baltic Sea.
More recent studies however, have applied the sensitive15N
tracer method using natural water samples to measure N2
fixation directly (Montoya et al., 1996; Ohlendieck et al.,
2000; Wasmund et al., 2001). The15N method opened the
possibility to investigate the significance of new (nitrate, ni-
trite and N2) and regenerated (ammonium) N incorporated
into the autotroph community of Baltic Sea phytoplankton
(e.g. S̈orensson and Sahlsten, 1987; Sahlsten and Sörensson,
1989). A number of studies have also used the15N method
to monitor the direct transfer of newly fixed N into the
planktonic foodweb (Paerl, 1984; Glibert and Bronk, 1994;
Ohlendieck et al., 2000).

Historically, decay and cell lysis of cyanobacteria have
been viewed as a significant source of regenerated N (Lin-

dahl et al., 1980; Schultz and Kaiser, 1986) and high concen-
trations of dissolved organic nutrients have been found dur-
ing and immediately after blooms of Baltic Sea cyanobac-
teria (Gundersen, 1981; Kuparinen et al., 1984). However,
Ohlendieck et al. (2000) found that actively growing dia-
zotroph filamentous cyanobacteria transferred DON to the
picoplankton community during the early stages of a sum-
mer bloom. A similar observation was made by Gallon et
al. (2002), who attributed the discrepancy between the acety-
lene reduction method (gross N2 fixation) and the15N-tracer
method (net N2 fixation) in filamentous cyanobacteria col-
lected over several diel cycles to be DON excretion by the di-
azotrophs. Exoenzymes are instrumental in the regenerative
process of dissolved organic matter and have been found in
association with filamentous cyanobacteria in the Baltic Sea
(Stoecker et al., 2005). Therefore, filamentous cyanobacteria
may not only be a source of DON for the non-diazotrophs,
but also serve as an active centre of organic nutrient regen-
eration to the plankton community. Until recently, filamen-
tous cyanobacteria were considered the only diazotroph or-
ganisms that contributed significantly to new production by
N2 fixation in the Baltic Sea. Nitrogen fixation by single
cell cyanobacteria (Wasmund et al., 2001; Zehr et al., 2001;
Montoya et al., 2004) however, may also be of importance
and represents another source of new N to the pelagic food-
web.

The aim of this study was to assess the significance of
N2 fixation to new production during the early stages of a
cyanobacterial bloom. During two successive years, rates of
N2 fixation and primary production were monitored in early
summer at 9 stations along a N-S transect covering the major
parts of the Baltic proper. By exclusion filtration of natural
seawater prior to and after in situ incubations, we identified
the significance of single cell diazotrophs and the magnitude
of DON excretion by filamentous cyanobacteria incorporated
by organisms<5µm. By applying known molar carbon
to nitrogen incorporation ratios (C:NRATE) for filamentous
cyanobacteria, we estimated the significance of N2 fixation
contributing to new N growth in filamentous cyanobacteria.

2 Materials and methods

CTD profiles and seawater samples were collected at des-
ignated stations (Fig. 1) on two transect cruises in the Cen-
tral Baltic Sea in 1998 (23 June–1 July) and 1999 (21 June–
29 June). During a drift station experiment (see Gallon et
al., 2001), three day-stations were kept during 5 additional
days in 1998 (6 July–11 July; drift stations 12–14; Fig. 1).
Physical parameters were measured using a Neil-Brown unit
equipped with conductivity, temperature and density (CTD)
sensors. Only temperature profiles are reported here. Seawa-
ter was collected at pre-determined depths using Hydrobios
water samplers attached to the CTD unit (1998) or the same
water samplers attached to a hydro-wire (1999). Upon re-
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trieval on deck, a small quantity of water (approx. 150 mL)
was collected immediately from each water sampler for nu-
trient analysis (see below). The majority of the water sam-
ple from each depth was transferred to a 20 L canister. Each
canister was gently homogenized by inverting it a couple of
times prior to sub-sampling. Sub-sample aliquots were im-
mediately dispensed into parallel incubation bottles for in
situ N2 fixation and primary production incubations using
the 15N and14C tracer methods (see below) and for HPLC
pigment analysis (see below). The incubation bottles were
deployed at ambient depths on a free-floating array from
07:00–19:00 h (1998 transect) or 06:00–18:00 h (1999 tran-
sect). During the drift station experiment in 1998 (Fig. 1),
incubations lasted from 04:00–16:00 h daytime (N2 fixation
and primary production) and 16:00-04:00 h at night (N2 fix-
ation). At noon each day, samples were also collected for
particulate organic carbon (POC), particulate nitrogen (PN)
and particulate total phosphorus (PTP) analysis (see below).

2.1 Nutrient analysis

Nutrient samples were collected in the morning and after-
noon at each station visited. The nutrient samples were
stored at 4◦C and analysed daily (typically within 4 h of sam-
pling) using an onboard auto-analyser. Dissolved inorganic
nitrogen (DIN; nitrate, nitrite, ammonium) and soluble re-
active phosphate (SRP) were determined according to the
methods described by Grasshoff et al. (1983). A daily av-
erage using the morning and afternoon data was calculated
for each station visited.

2.2 N2 fixation

Sample aliquots were collected in replicates of 0.5 or 1 L
polycarbonate bottles filled to the brim and sealed with a
butyl rubber septum cap. Great care was taken to avoid
air-bubbles inside the sealed incubation bottles. A gas-tight
syringe was used to inject15N-labelled dinitrogen (N2) gas
(99 atom %15N, Campro Scientific) and excess water was
allowed to bleed out through a second injection needle to
equalize pressure. Final15N2 enrichments ranged between
5.4–6.1 atom % N depending on the physical parameters of
the sample water (Weiss, 1970). Each incubation was termi-
nated by collecting the cells on pre-combusted (450◦C, 6 h)
25 mm Whatman GF/F filters using low vacuum (<100 mm
Hg) filtration. At all stations in both years, one whole sea-
water sample from each depth was collected on a GF/F filter
(total N2 fixation) and one sample was screened through a
5µm membrane filter and cells<5µm were collected on
a GF/F filter upon terminating the incubation. In another
set of samples (see Table 2 for details) cells>20µm were
collected on a Nytex screen and transferred to a GF/F fil-
ter using GF/F filtered seawater. A number of samples were
also screened prior to deployment and cells<5µm were in-
cubated separately as a control to test for N2 fixed by this

fraction, during the 1998 transect (all stations) and the 1999
transect (stations 9, 11, 13 and 15). During the 1998 tran-
sect (stations 6–9) cells<20µm were also separated prior to
the in situ incubations to test for N2 fixation by smaller sized
cyanobacteria. Incubations with pre-screened cells<5µm
and<20µm were terminated and collected on separate GF/F
filters. Each filter sample was wrapped in pre-combusted alu-
minium foil and stored at –20◦C until further analysis. In the
laboratory, the samples were dried at 60◦C, wrapped in tin
cups (Heraeus CHN cups) and packed into pellets. The15N
enrichments were analysed on a Europa Mass Spectrometer
20–20, with an ANCA-SL preparatory unit (Crewe, England,
UK). The mass spectrometer was standardised with bovine
serum albumin and the precision of the analytical procedure,
as measured by standard deviation of the nitrogen isotope,
was typically 0.04%. The rate of N2 fixation was calculated
according to Montoya et al. (1996).

2.3 Primary production

Sample water was collected in acid cleaned (10% hydrochlo-
ric acid) 250 mL Erlenmeyer polycarbonate incubation bot-
tles. Three replicate incubation bottles, a time zero and a dark
bottle were collected for each depth. The primary production
method was adapted to the trace-metal clean procedures out-
lined by Fitzwater et al. (1982). Under low light conditions
14C-labelled sodium bicarbonate was added to each flask at
the start of the assay (final specific activity=1.6µg C nCi−1)

and the time zero was immediately filtered and processed.
At the end of the incubation and under low light conditions,
each bottle was immediately filtered onto a 25 mm Whatman
GF/F filter. Thereby particles>20µm were collected sepa-
rately at all stations in both years. The size fraction>20µm
was collected on a Nytex screen and transferred to a 25 mm
Whatman GF/C filter using GF/F filtered seawater. Each fil-
ter was placed in a 20 mL scintillation vial and added 250µL
HCl (0.5%) until further processing after each cruise. In the
laboratory all sample vials were uncapped and the residual
14C-bicarbonate was left to evaporate off the filters in a fume
hood. Ultima Gold XR scintillation cocktail was added to
each filter sample and the activity was counted on a Wallac
1409 Liquid Scintillation Counter using the external channel
ratio method.

2.4 HPLC pigment analysis

Sample water aliquots of 2 L were filtered onto Whatman
GF/F filters. Cells>20µm were collected separately at sta-
tions 1–7 in 1998 and on all stations (except stations 9–11)
in 1999. The size fraction>20µm was collected on a Nytex
screen and transferred to a 25 mm Whatman GF/C filter us-
ing GF/F filtered seawater. The filter samples were wrapped
in aluminium foil and stored in liquid nitrogen until further
analysis. Each pigment sample was placed in 2.5 mL (90%)
acetone and, to ensure complete extraction, each sample was
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Fig. 2. Seawater temperature measured as a function of depth at the
transect stations in 1998(A) and 1999(B). Temperature profiles at
the drift stations 12–14 (thicker lines in Fig. 2A) are also shown.

added a mixture of 2 and 4 mm glass beads and shaken for
5 min in a cooled Vibrogen cell mill (Buehler, Germany).
Subsequently, the extracts were centrifuged (5000 rpm) for
10 min at −10◦C and the supernatant analysed according
to the method of Derenbach (1969). The entire process-
ing and analysis was executed under low light conditions to
prevent photo-oxidation of the pigments. Pigment concen-
trations were determined by reverse-phase high-performance
liquid chromatography (RP-HPLC) according to the method
of Barlow et al. (1997) using a diode array spectrophotome-
ter (Waters) and commercially available pigment standards
(Sigma Chemical Company, USA and International Agency
for 14C Determination, Denmark). The pigment composi-
tion from each sample was used to calculate the relative pro-
portion of phytoplankton classes to total chlorophylla (Chl
a) using the CHEMTAX program (Mackey et al., 1996).
Only the fraction of total Chla associated with filamentous
cyanobacteria is shown in this study. The ratio between the
class specific pigment of filamentous cyanobacteria (echi-
nenone) and Chla was established from natural samples
of the filamentous diazotrophs collected specifically for this
purpose during the two cruises.

2.5 POC and PN analysis

Sample aliquots of 0.5 L from each depth were filtered onto
pre-combusted (5 h, 500◦C) 25 mm Whatman GF/F filters,
that were wrapped in pre-combusted aluminium foil and
stored at−20◦C. Particles>20µm were collected separately
at all stations in both years. A sample aliquot of 1 L was col-
lected on a 20µm Nytex screen and the retained particles
transferred to a 25 mm Whatman GF/C filter. Prior to analy-
sis, the filters were dried at 65◦C, fumigated by concentrated
HCl, dried again and packed in tin capsules. The POC and

PN content was analysed using a Control Equipment Corpo-
ration 240-XA Elemental Analyzer (1998) or a Carlo-Erba
Strumentazione Elemental Analyser (1999).

2.6 PTP analysis

Sample aliquots of 0.5 L were filtered onto HCl washed
25 mm Whatman GF/F filters. Particles>20µm were col-
lected separately at all stations in both years. A sample
aliquot of 1 L was collected on a 20µm Nytex screen and
the retained particles transferred to a 25 mm Whatman GF/C
filter. Analysis of cellular P by the ashing-hydrolysis method
was performed as discussed in Solorzano and Sharp (1980).
The filters were soaked in phosphate-free, deionised water
(particle free) and were dried prior to use. The filter-collected
samples were rinsed with 0.17 M Na2SO4 and stored in acid
cleaned containers at−20◦C. Prior to analysis, the samples
were thawed and 0.017 M MgSO4 was added before being
left overnight at 95◦C. The samples were then combusted at
500◦C for 3 h and the remaining P was extracted in 2 mL of
0.2 M HCl at 80◦C for a minimum of 1 h. The acid extrac-
tion solution was centrifuged (30 min, 5000 rpm), and the
supernatant analysed as for SRP according to Grasshoff et
al. (1983).

3 Results

Average surface water temperature was approximately 2◦C
higher in 1999 than in 1998 (Fig. 2). The thermocline was
more pronounced in 1999 and during the drift station ex-
periment in 1998 (Fig. 2). DIN (0.1–0.2µM) was slightly
higher in 1999 than during the 1998 transect with average
concentrations of ammonium twice as high in 1999 (Fig. 3a,
b). The average concentration of SRP in surface waters (0–
14 m) was uniformly low during the 1999 transect (0.08µM)
(Fig. 3c, d) and slightly higher in 1998 (average of 0.2µM at
the southern stations and 0.05µM at the northern stations).
Due to these differences between the years, the median (geo-
metric mean) of the molar N:P ratio (1–3) was almost twice
as high during the 1999 transect. Cursory microscopy of live
samples during the two cruise transects showed thatAphani-
zomenonsp. was the predominant filamentous cyanobacteria
in surface waters at the northern stations (data not shown),
whereasNodulariasp. appeared more frequent at the south-
ern stations.

Total Chla as a function of depth did not show any pro-
nounced inter-annual differences (Fig. 4a). Integrated rates
of total N2 fixation were a fraction of 0.71 lower at night
than in daytime at the drift station (Table 1). The daytime
rates of N2 fixation (NFDAY ) measured on all transect sta-
tions in both years, were factor corrected for the night-time
activity (NFDAY +NFDAY ∗0.71) to yield daily rates (Fig. 4b).
Since primary production was measured from dawn to dusk,
no correction factor was used for this parameter. With the
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Fig. 3. DIN concentrations (open circles) as a function of depth in
1998(A) and 1999(B). The geometric average of DIN (whole line)
and ammonium (dashed line) is shown for each cruise transect each
year. SRP concentrations (open circles) as a function of depth in
1998(C) and 1999(D). The geometric average of SRP (whole line)
and the molar N:P ratio (dashed line) is shown for each cruise in
each year. Nutrient samples were also collected at the drift station
casts 12–14 (whole circles). Stations 1, 2, 6 and 7 in 1998 did not
have all nutrients analysed and were not included in the graph.

Table 1. Rates of N2 fixation measured in daylight (04:00–16:00 h)
and at night (16:00–04:00 h) in whole seawater from the Baltic Sea
in 1998. The rates from each station were integrated (0–14 m) and
the N2 fixation at night was calculated as a fraction of the daytime.

Station Day Night Night:Day
nmol N m−2h−1 nmol N m−2h−1

12 30.34 21.65 0.71
13 30.45 21.54 0.71

exception of the drift stations, the rates of N2 fixation and
primary production were twice as high in surface waters in
1999 compared to 1998 (Fig. 4b, c). Very low rates or no N2
fixation and primary production were detected below 14 m
depth in both transects. The median average of the depth–
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Fig. 4. Total Chla (A), rates of N2 fixation (B) and primary pro-
duction (C) plotted as a function of depth in 1998 (open circles)
and 1999 (closed circles). Where available, the geometric average
at each depth was calculated for the 1998 transect cruise (dashed
line) and drift station (dotted line) and the cruise transect in 1999
(solid line).

integrated rates of total N2 fixation (0–14 m) from each tran-
sect were 0.5 mmol N m−2d−1 in 1998 (range 0.1–0.8) and
1.0 mmol N m−2d−1 in 1999 (range 0.3–2.7). The median
average of the depth–integrated rates of total primary produc-
tion from each transect were 32.3 mmol C m−2d−1 in 1998
(range 20.4–40.9) and 57.9 mmol C m−2d−1 in 1999 (range
25.9–85.2).

Rates of15N enrichment in cells<5µm (separated after
incubation) were plotted as a linear function of total N2 fixa-
tion for both transects in 1998 and 1999 (Fig. 5) and the av-
erage fraction of15N enrichment in cells<5µm (the slope)
was 0.09 in 1998 and 0.15 in 1999. Cells<5µm (sepa-
rated prior to incubation) showed no detectable uptake. Cells
<20µm (separated prior to incubation) at stations 6–9 in
1998 showed low rates of N2 fixation (median fraction 0.05
of total N2 fixation) but the ratios were variable (range 0.01–
0.1) between stations (Table 2).

Diazotroph specific Chla was plotted as a linear function
of Chl a>20µm (Fig. 6). The fraction of diazotrophy in
cells >20 µm ranged between 0.92–0.88 of the total rate
of N2 fixation in surface waters in 1998, and was 0.48 of
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Table 2. Integrated rates of N2 fixation (0–14 m) in whole seawater and cells<20µm in the Baltic Sea in 1998. Cells<20µm were
separated prior to the in situ daytime incubations and the rates of N2 fixation in cells<20µm were also calculated as a fraction of the total
rate.

Station Total N2 fixation N2 fixation<20µm Fraction<20µm
µmol N m−2h−1 µmol N m−2h−1 ratio

6 27.15 0.18 0.01
7 22.51 2.06 0.09
(∗)8 18.13 1.79 0.10
9 38.21 3.89 0.10

(∗)=0–9 m integration (sample at 14 m depth missing)

Table 3. Rates of N2 fixation measured in cells larger and smaller than 20µm (separated after incubation) in the Baltic Sea in 1998 (stations
6–9) and 1999 (stations 7–15). The rates from each station were averaged per depth and the rate of N2 fixation in cells>20µm was calculated
as a fraction of the total rate.

Depth Total N2 fixation N2 fixation>20µm Fraction>20µm
m nmol N L−1h−1 (range) nmol N L−1h−1 (range) ratio (range)

1998:
0 3.08 (2.06–5.18) 2.86 (1.74–4.54) 0.92 (0.84–1.00)
4 2.68 (2.14–4.36) 2.38 (1.70–3.80) 0.89 (0.82–0.97)
9 1.16 (0.54–1.54) 1.00 (0.48–1.28) 0.88 (0.81–1.00)
14 0.22 (0.12–0.40) 0.12 (0.04–0.26) 0.48 (0.29–0.65)

1999:
0 5.42 (1.22–13.52) 4.28 (1.02–10.92) 0.81 (0.69–0.99)
4 5.38 (1.44–11.96) 4.50 (1.22–10.12) 0.85 (0.70–1.00)

the total at 14 m depth (Table 3). The fraction of N2 fix-
ation in cells>20µm was 0.81–0.85 in surface waters in
1999 (Table 3). The average fractions of N2 fixation in cells
>20µm were used to calculate the integrated rate of N2 fix-
ation in cells>20µm at each station of both transects. In
1999, the depths without data were substituted with the re-
sults from the 1998 transect (Table 3). The fraction of pri-
mary production in cells>20µm varied widely between sta-
tions in each year (Table 4) but the median value in 1998
(0.17) was similar to the median calculated in 1999 (0.16).
The median fractions of integrated Chla and PTP in parti-
cles>20µm were similar in both years and approximately
one fifth of the total (Table 4). The fractions of integrated
POC and PN in particles>20 µm (relative to total amount)
were slightly higher and approximately one third of the total
(Table 4). Both the molar elemental ratios of C:N in particles
>20µm (C:NMASS>20µm) and total integrated C:NMASS
were lower in 1999 than in 1998 (Table 4). The median
of total C:PMASS was higher in 1999 and the integrated C:P
in particles>20µm (C:PMASS>20µm) varied little between
the two years, but was higher than total C:PMASS (Table 4).
The median of the total C:N incorporation ratio was more
than 5 times higher than the molar C:N incorporation in cells

>20 µm (C:NRATE >20µm) and both size fractions were
similar between the years (Table 4). The calculated C:NRATE
in cells >20µm increased as a function of daily integrated
PAR (Fig. 7).

4 Discussion

4.1 Early blooms of diazotrophic cyanobacteria

We found a striking difference in surface water hydrography
between the two summer transects investigated in 1998 and
1999. Surface waters during the 1999 transect were warmer
and had a variable, but more pronounced thermocline than in
1998. This difference appeared to be reflected in the over-
all plankton community production. Given the great vari-
ability between stations in each year (Fig. 3) there was a
general trend towards higher rates of both N2 fixation and
primary production in surface waters in 1999. This was
also evident in the median rates of total N2 fixation and pri-
mary production that were a factor of 2 higher during the
1999 transect. The hydrography at the drift stations visited
5 days after the 1998 transect (st. 12–14) were characterized
by a stronger thermocline and slightly warmer surface wa-
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Table 4. Integrated mass and primary production in cells>20 µm calculated as the fraction of the total, during two transect cruises (1998,
1999) in the Baltic Sea. The molar ratios of integrated mass and elemental incorporation in two size fractions (total mass and particles
>20µm) were also calculated.

1998 1999
median (range) median (range)

Fraction>20µm (0–14 m):
Primary production 0.17 (0.13–0.25) 0.16 (0.06–0.27)
Chl a 0.16 (0.07–0.27) 0.24 (0.12–0.46)
POC 0.37 (0.31–0.43) 0.27 (0.18–0.58)
PN 0.34 (0.31–0.42) 0.29 (0.18–0.68)
PTP 0.18 (0.12–0.31) 0.20 (0.10–0.36)

Integrated molar ratios (0–14 m):
C:NMASS>20µm 10.1 (7.8–12.0) 6.8 (5.8–7.8)
C:NMASS total 9.2 (8.6–10.2) 7.4 (7.1–7.9)
C:PMASS>20µm 204.7 (124.5–285.3) 195.9 (127.3–355.1)
C:PMASS total 98.4 (84.2–113.5) 145.3 (123.8–166.5)
C:NRATE>20µm 12.1 (8.2–27.7) 11.6 (6.5–17.6)
C:NRATE total 65.0 (36.9–185.0) 60.0 (22.3–249.6)

0 3 6 9 12 15
0.0

0.4

0.8

1.2

1.6

2.0
 1998
 1999

15
N

-e
nr

ic
hm

en
t <

5 
µm

 (n
m

ol
 N

 L
-1
h-1

)

Total N2 fixation (nmol N L-1h-1)

Figure 5

Fig. 5. Rates of 15N enrichment in cells<5µm (screened
after incubation) as a function of total N2 fixation measured
from water samples at the transect stations 1–9 and at the
drift station experiment (stations 12–14) in 1998 (open cir-
cles) and from the transect stations 7–15 in 1999 (closed
circles). Solid lines shows the linear regression in 1998;
y=0.089(±0.009)·x+0.008(±0.030), n=33, R=0.881, P<0.0001;
and in 1999; y=0.147(±0.014)·x+0.058(±0.075), n=26, R=0.904,
P<0.0001. Rates of15N enrichment in cells<5µm at stations 1–2
in 1998 were below detection and not included in this figure.

ters than observed earlier in the cruise that year. The higher
rates of N2 fixation and primary production at the drift sta-
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Fig. 6. Diazotroph Chla plotted as a function of Chla>20µm in
samples collected from the cruise transects in 1998 (open circles)
and 1999 (closed circles). Dashed line is the 1:1 relationship and
the solid line shows the linear regression of both cruises combined;
y=0.872(±0.036)·x+0.098(±0.019), n=90, R=0.933, P<0.0001.

tion (Fig. 3b, c) may suggest that, once in place, the plank-
ton community was able to respond quickly to changes in
hydrography and the strengthening of the thermocline. In-
tegrated estimates by Wasmund et al. (2001) for the central
Baltic Sea in 1997–1998 showed that 75 mmol N m−2 was
incorporated in surface waters in summer (mid July–mid Au-
gust). Their estimate for late summer and fall amounted
to 50 mmol N m−2 (mid August–mid October), but Was-
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Fig. 7. Integrated C:NRATE>20µm as a function of daily inte-
grated PAR in 1998 (open circles) and 1999 (closed circles). The
dashed line is the Redfield relationship and the solid line is the
linear regression; y=0.000095(±0.000069)·x+8.18(±3.31), n=18,
R=0.322, P=0.192.

mund et al. (2001) did not include the early summer phase
of the bloom of filamentous cyanobacteria. Assuming that
the early onset of the bloom lasted about a month, our study
may suggest that a significant amount of N2 fixation con-
tributed to new production in 1998 (15 mmol N m−2) and
1999 (33 mmol N m−2). By including the early bloom, 12–
26% more N can be added to the annual estimate given by
Wasmund et al. (2001), which brings the annual budget in the
range of 140–158 mmol N m−2 yr−1. The between-station
variability in both primary production and N2 fixation that
appeared in this study greatly emphasizes the need for im-
plementing spatial as well as temporal sampling strategies in
ecological studies of the Baltic Sea.

4.2 Primary production and N2 fixation in filamentous
cyanobacteria

We found that cells collected in the>20µm fraction were
predominantly filamentous cyanobacteria (Fig. 6) and the
contribution of N2 fixation to new production in open wa-
ters of the Baltic Sea was almost entirely found in cells
>20µm (Table 3). Gallon et al. (2002) found that filamen-
tous cyanobacteria incorporate C and N at ratios much higher
than the Redfield ratio of 6.6 in surface water (Redfield et al.,
1963). By applying these C:N incorporation ratios to our spe-
cific depths (C:NRATE [0–7 m]=17.6; [7–14 m]=5.1; Gallon
et al., 2002) we calculated how much new N from N2 fixation
did support the measured rates of primary production. Inte-
grated rates of N2 fixation in filamentous cyanobacteria con-
tributed an average of 73% in the 1998 transect (range 28–
119%) and 81% in 1999 (range 46–150%) towards the mea-

sured rates of primary production in cells>20µm. This may
suggest that filamentous cyanobacteria were able to support
their photosynthetic growth requirement with new N at some
of the stations, while at other stations they were not able to
complement their growth by diazotroph N at the days vis-
ited. The average integrated C:NRATE ratios in cells>20µm
in this study (Table 4) were almost two times higher than the
Redfield ratio of 6.6 in both years but showed high variabil-
ity in both years (C:NRATE ranged between 7–28). Gallon et
al. (2002) found a similar C:NRATE ratio to ours and noted
a temporal uncoupling between C and N incorporation rates
in the filamentous diazotrophs investigated over 3 diel cy-
cles. In high light conditions, filamentous cyanobacteria do
incorporate excess amounts of C as glucose, lipids and poly-
hydroxybutyrate storage products (Stal and Walsby, 1998).
Loss of buoyancy results from excessive C-incorporation and
carbohydrate ballasting (Ibelings et al., 1991) limiting the
exposure of filamentous cyanobacteria to UV irradiance in
the top layer of the water column. In our study integrated
C:NRATE in cells >20µm was frequently higher on days
with high surface irradiance (Fig. 7) showing that measured
rates of primary production and N2 fixation were at times
out of phase. These rates were not reflected however, in
C:NMASS of all particles combined or>20µm (Table 3). In-
deed, C:NMASS ratios were similar to the Redfield ratio sug-
gesting that excess C incorporated was stored on a very short
term basis (<24 h). Also a low cellular P content causes loss
of buoyancy in filamentous cyanobacteria (Konopka et al.,
1987; Klemer et al., 1995) and particles>20µm had a low P
content in our study (Table 4). Low P is commonly found in
filamentous cyanobacteria in the Baltic Sea in summer (Lars-
son et al., 2001; Nausch et al., 2004).

Other studies in the Baltic Sea have found that diazotrophs
can meet (S̈orensen and Sahlsten, 1987) or even exceed (Stal
and Walsby, 2000) their growth requirements for new N by
N2 fixation. The biogeochemical estimates by Larsson et
al. (2001), based on measurements of total nitrogen, also sug-
gested that Baltic Sea cyanobacteria were able to assimilate
more new N through N2 fixation, than what was needed to
support their growth. The Gallon et al. (2002) study noted
a discrepancy in the rates of N2 fixation determined by the
acetylene reduction method (gross N2 fixation) and the15N-
tracer method (net N2 fixation). They concluded that a sig-
nificant amount of newly fixed N may have been released
by the filamentous cyanobacteria (Gallon et al., 2002) and
this was not being accounted for with the15N tracer method
used in this study. We found evidence of exudation of newly
fixed N (see below) and this may be a reason for the discrep-
ancy between our study and the gross estimates of N2 fixa-
tion mentioned above (Stal and Walsby, 2000; Sörensen and
Sahlsten, 1987; Larsson et al., 2001). A crude comparison
between these gross estimates from literature and our results
based on the15N method (73% and 81%, see above), indi-
cates that filamentous cyanobacteria may excrete as much as
one third of newly fixed N during the course of a day. Stal et
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al. (2003) suggested that up to 80% of recently fixed N can
at times be released over shorter periods of time in surface
waters of the Baltic Sea. High C:NRATE ratios in filamen-
tous cyanobacteria may also be caused by uptake of other
sources of N (S̈orensson and Sahlsten, 1987). Mulholland et
al. (2004) found rapid uptake of previously released NH4 and
DON in their cultures ofTrichodesmium. Evans et al. (2000)
found that nitrogenase activity in filamentous cyanobacteria
decreased over the course of a day in the Baltic Sea and we
suggest that this can be attributed to simultaneous uptake of
regenerated N. Therefore, the exceedingly high C:NRATE ra-
tios found in this study may be as a consequence of both
excess C incorporation as well as release of newly fixed N
and regenerated N incorporation.

4.3 Diazotroph release of DON and single cell N2 fixation

Cells<5µm incorporated 9% in 1998 and 15% in 1999 of
total N2 fixation and in the pre-incubation size fractionation
experiments the<5µm fraction showed no detectable rates
of N2 fixation in this study. Therefore, the observed15N en-
richment in cells<5µm may have resulted from recent N2
fixation excreted as DON or NH4 and incorporated by non-
diazotroph phytoplankton. Cyanobacteria are known to re-
lease nitrogenous material as DON (Flynn and Gallon, 1990;
Glibert and Bronk, 1994) and NH4 (Mulholland and Capone,
2001) at times of excess N2 fixation relative to cellular syn-
thesis (Gallon et al., 2002). Our study confirms the findings
of Ohlendieck et al. (2000), who suggested that newly fixed
N was transferred from filamentous cyanobacteria to smaller
plankton. In their study, an increase in abundance ofSyne-
chococcussp. was observed between cruises and over the
course of a month, and this co-occurred with a developing
bloom of filamentous cyanobacteria in the central Baltic Sea
in 1995. Ohlendieck et al. (2000) suggested that the observed
increase in biomass of the non-diazotroph cyanobacteria may
have been fuelled by newly excreted DON from the larger
filamentous diazotrophs. Pico-cyanobacteria are strongly N-
limited in the Baltic Sea and may benefit from diazotroph
cyanobacteria as a nutrient source, since they show similar
temporal and spatial distribution (Stal et al., 2003). The re-
lease of N by filamentous cyanobacteria represents an impor-
tant and significant way of making new N available for the
pelagic food-web at the early stage of cyanobacterial blooms
in the Baltic Sea.

By monitoring total N in surface waters of the Baltic Sea
in summer, Larsson et al. (2001) estimated the annual new
production by N2 fixation and found a sizeable amount of
N that could not be attributed to their estimates of filamen-
tous cyanobacteria biomass (determined from cell counts).
Larsson et al. (2001) concluded that the N that could not be
accounted for may have been generated by DON excretion
from filamentous cyanobacteria, or generated by other dia-
zotrophs that were not investigated in their study. N2 fixa-
tion by single cell cyanobacteria represents another source

of newly fixed N to the pelagic food-web in early summer.
In our study we found N2 fixation in the pre-screened cells
<20µm (Table 2). Since the group specific pigment echi-
nenone was not found in size fractions<20µm, we assume
that this size fraction did not contain any significant amounts
of filamentous cyanobacteria. Wasmund et al. (2001) also
detected N2 fixation in the smaller size fractions of Baltic
Sea phytoplankton. They estimated that cells<10µm con-
tributed 43% of total N2 fixation in the upper 20 m of the
water column (Wasmund et al., 2001) and suggested that
this was caused by non-heterocystous, coccoid cyanobacte-
ria. Recent studies have also demonstrated that significant
amounts of active single cell diazotrophs are found in tem-
perate regions of the northern Pacific (Zehr et al., 2001; Mon-
toya et al., 2004). Since we did not detect any significant
rates of N2 fixation in cells<5µm in our daylight incuba-
tions, we conclude that cells between 5–20µm (or aggrega-
tions of smaller sized single cell cyanobacteria) in the Baltic
Sea in early summer may at times use N2 fixation to support
their nutrient requirements.

4.4 The importance of N2 fixation to total primary produc-
tivity

Assuming the same C:NRATE assimilation ratios as above
(Gallon et al., 2002), integrated rates of total N2 fixation con-
tributed 13% in 1998 (range 4–24%) and 18% in 1999 (range
2–45%) to total primary production. In recent years, a wide
range in C:NRATE ratios has emerged from Baltic Sea stud-
ies. By using the15N-tracer method, Wasmund et al. (2001)
found a C:NRATE of 6.8 at the height of the bloom of filamen-
tous cyanobacteria in August 1997. During other stages of
the bloom however, molar C:NRATE approached 20 to>100
and in August the year after, only 17% of the average N de-
mand could be met by N2 fixation (Wasmund et al., 2001).
Studies taking into account gross N2 fixation on the other
hand, e.g. acetylene reduction by Stal and Walsby (2000) and
total N biogeochemistry by Larsson et al. (2001), have gen-
erally measured a higher contribution (>50%) to new pro-
duction. This discrepancy can to a large extent be attributed
to N excretion (see Gallon et al., 2002) that is not being
accounted for in N2 fixation estimates using the15N-tracer
method. S̈orensson and Sahlsten (1987) however, measured
N2 fixation by the acetylene reduction method and found
that N2 fixation contributed only 16% of the total N utilized
by the phytoplankton community at station BY31 (stations
8 in 1998 and 9 in 1999 in this study). The low contribu-
tion to new production by N2 fixation in the S̈orensson and
Sahlsten (1987) study may suggest that other nutrient sources
(such as regenerated N) were utilized by the phytoplankton
community (including the diazotroph cyanobacteria). The
Sörensson and Sahlsten (1987) study took place in late sum-
mer during the last stages of a cyanobacterial bloom. At that
time we can assume that there was a closely coupled food-
web dominated by regenerated production with ammonium
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as one of the major sources of N. In contrast, our study took
place at the beginning of the cyanobacterial growth season
with a plankton community still attuned towards new produc-
tion and relatively low levels of ammonium. We found that
9 and 15% of the total rate of N2 fixation (dominated by fil-
amentous cyanobacteria), was incorporated by cells<5µm
in early summer (Fig. 5). This is almost a factor of ten less
than what Sahlsten and Sörensson (1989) found during a de-
clining cyanobacterial bloom in the same area (71–93% of
total N). In our study we found relatively low concentrations
of ammonium (median conc. 0.05µM) in 1998 and the me-
dian concentration of ammonium in 1999 was almost twice
as high (approx. 0.1µM). The higher median values of am-
monium in surface waters during the 1999 transect (Fig. 3)
also coincided with higher rates of N2 fixation during that
transect and a higher level of15N-enrichment in cells<5µm
(Fig. 5). The diel increase in ammonium concentrations re-
ported by Stal et al. (2003) for the 1999 transect may be as a
result of enzymatic regeneration of newly released DON or
release of NH4 and hence, the larger filamentous diazotrophs
may have contributed new N to the pool of regenerated nutri-
ents. Surface waters of the Baltic Sea in summer are charac-
terized by a low N:P nutrient ratio and we can assume that re-
generated nutrients are readily utilized by the non-diazotroph
components of the phytoplankton community. Therefore, we
concur with Larsson et al. (2001) in that N2 fixation may sus-
tain a considerable fraction of net community production in
the Baltic Sea in summer. Rolff (2000) also demonstrated
that the effect of N2 fixation (trophicδ15N enrichment) was
found in all size fractions of phytoplankton in the Baltic Sea
in late summer. Hence, N2 fixation in summer may con-
tribute significantly to new as well as regenerated production
in surface waters of the Baltic Sea.

5 Summary

This study shows that N2 fixation by filamentous cyanobac-
teria may provide a significant input to new production in
the surface waters of the Baltic Sea in early summer. Dis-
proportionate amounts of C are at times incorporated rela-
tive to N in filamentous cyanobacteria. Since the C:NMASS
is fairly constant and similar to the Redfield ratio, we as-
sume that excess C is not stored in cells over longer periods
of time and possibly used within the course of a day. Fil-
amentous cyanobacteria and non-diazotroph phytoplankton
may also utilize significant amounts of regenerated N. Even
though the phytoplankton community is dominated by non-
diazotroph organisms in the Baltic Sea, a small fraction of
single cell diazotrophs may at times contribute significantly
towards new production. Total rates of N2 fixation, measured
by the15N tracer method, contribute only a minor portion of
new N to the phytoplankton community in summer. DON
release from filamentous diazotroph cyanobacteria however,
may contribute significantly towards the utilization of regen-

erated N by the non-diazotroph community of phytoplank-
ton.
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