50 research outputs found

    Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment

    Get PDF
    Improving upon our purely dynamical work, we present three-dimensional simulations of the atmospheric circulation on Earth-like (exo)planets and hot Jupiters using the Geophysical Fluid Dynamics Laboratory (GFDL)-Princeton Flexible Modelling System (fms). As the first steps away from the dynamical benchmarks of Heng, Menou & Phillipps, we add dual-band radiative transfer and dry convective adjustment schemes to our computational set-up. Our treatment of radiative transfer assumes stellar irradiation to peak at a wavelength shorter than and distinct from that at which the exoplanet re-emits radiation (‘shortwave' versus ‘longwave'), and also uses a two-stream approximation. Convection is mimicked by adjusting unstable lapse rates to the dry adiabat. The bottom of the atmosphere is bounded by a uniform slab with a finite thermal inertia. For our models of hot Jupiter, we include an analytical formalism for calculating temperature-pressure profiles, in radiative equilibrium, which accounts for the effect of collision-induced absorption via a single parameter. We discuss our results within the context of the following: the predicted temperature-pressure profiles and the absence/presence of a temperature inversion; the possible maintenance, via atmospheric circulation, of the putative high-altitude, shortwave absorber expected to produce these inversions; the angular/temporal offset of the hotspot from the substellar point, its robustness to our ignorance of hyperviscosity and hence its utility in distinguishing between different hot Jovian atmospheres; and various zonal-mean flow quantities. Our work bridges the gap between three-dimensional simulations which are purely dynamical and those which incorporate multiband radiative transfer, thus contributing to the construction of a required hierarchy of three-dimensional theoretical model

    Structure of AGCM-Simulated Convectively Coupled Kelvin Waves and Sensitivity to Convective Parameterization

    Get PDF
    A study of the convectively coupled Kelvin wave (CCKW) properties from a series of atmospheric general circulation model experiments over observed sea surface temperatures is presented. The simulations are performed with two different convection schemes (a mass flux scheme and a moisture convergence scheme) using a range of convective triggers, which inhibit convection in different ways. Increasing the strength of the convective trigger leads to significantly slower and more intense CCKW activity in both convection schemes. With the most stringent trigger in the mass flux scheme, the waves have realistic speed and variance and also exhibit clear shallow-to-deep-to-stratiform phase tilts in the vertical, as in observations. While adding a moisture trigger results in vertical phase tilts in the mass flux scheme, the moisture convergence scheme CCKWs show no such phase tilts even with a stringent convective trigger. The changes in phase speed in the simulations are interpreted using the concept of "gross moist stability" (GMS). Inhibition of convection results in a more unstable tropical atmosphere in the time mean, and convection is shallower on average as well. Both of these effects lead to a smaller GMS, which leads to slower propagation of the waves, as expected from theoretical studies. Effects such as changes in radiative heating, atmospheric humidity, and vertical velocity following the wave have a relatively small effect on the GMS as compared with the time mean state determined by the convection scheme.open222

    The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization

    Get PDF
    The response of tropical precipitation to extratropical thermal forcing is reexamined using an idealized moist atmospheric GCM that has no water vapor or cloud feedbacks, simplifying the analysis while retaining the aquaplanet configuration coupled to a slab ocean from the authors' previous study. As in earlier studies, tropical precipitation in response to high-latitude forcing is skewed toward the warmed hemisphere. Comparisons with a comprehensive GCM in an identical aquaplanet, mixed-layer framework reveal that the tropical responses tend to be much larger in the comprehensive GCM as a result of positive cloud and water vapor feedbacks that amplify the imposed extratropical thermal forcing. The magnitude of the tropical precipitation response in the idealized model is sensitive to convection scheme parameters. This sensitivity as well as the tropical precipitation response can be understood from a simple theory with two ingredients: the changes in poleward energy fluxes are predicted using a onedimensional energy balance model and a measure of the "total gross moist stability" [??m, which is defined as the total (mean plus eddy) atmospheric energy transport per unit mass transport] of the model tropics converts the energy flux change into a mass flux and a moisture flux change. The idealized model produces a low level of compensation of about 25% between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics regardless of the convection scheme parameter. Because Geophysical Fluid Dynamics Laboratory Atmospheric Model 2 (AM2) with prescribed clouds and water vapor exhibits a similarly low level of compensation, it is argued that roughly 25% of the compensation is dynamically controlled through eddy energy fluxes. The sensitivity of the tropical response to the convection scheme in the idealized model results from different values of ??m: smaller ??m leads to larger tropical precipitation changes for the same response in the energy transport.open624

    The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM

    Get PDF
    Using a comprehensive atmospheric GCM coupled to a slab mixed layer ocean, experiments are performed to study the mechanism by which displacements of the intertropical convergence zone (ITCZ) are forced from the extratropics. The northern extratropics are cooled and the southern extratropics are warmed by an imposed cross-equatorial flux beneath the mixed layer, forcing a southward shift in the ITCZ. The ITCZ displacement can be understood in terms of the degree of compensation between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics. The magnitude of the ITCZ displacement is very sensitive to a parameter in the convection scheme that limits the entrainment into convective plumes. The change in the convection scheme affects the extratropical-tropical interactions in the model primarily by modifying the cloud response. The results raise the possibility that the response of tropical precipitation to extratropical thermal forcing, important for a variety of problems in climate dynamics (such as the response of the tropics to the Northern Hemisphere ice sheets during glacial maxima or to variations in the Atlantic meridional overturning circulation), may be strongly dependent on cloud feedback. The model configuration described here is suggested as a useful benchmark helping to quantify extratropical-tropical interactions in atmospheric models.open988

    The remote impacts of climate feedbacks on regional climate predictability

    Get PDF
    Uncertainty in the spatial pattern of climate change is dominated by divergent predictions among climate models. Model differences are closely linked to their representation of climate feedbacks, that is, the additional radiative fluxes that are caused by changes in clouds, water vapour, surface albedo, and other factors, in response to an external climate forcing. Progress in constraining this uncertainty is therefore predicated on understanding how patterns of individual climate feedbacks aggregate into a regional and global climate response. Here we present a simple, moist energy balance model that combines regional feedbacks and the diffusion of both latent and sensible heat. Our model emulates the relationship between regional feedbacks and temperature response in more comprehensive climate models; the model can therefore be used to understand how uncertainty in feedback patterns drives uncertainty in the patterns of temperature response. We find that whereas uncertainty in tropical feedbacks induces a global response, the impact of uncertainty in polar feedbacks remains predominantly regionally confined

    Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment

    Full text link
    Improving upon our purely dynamical work, we present three-dimensional simulations of the atmospheric circulation on Earth-like (exo)planets and hot Jupiters using the GFDL-Princeton Flexible Modeling System (FMS). As the first steps away from the dynamical benchmarks of Heng, Menou & Phillipps (2011), we add dual-band radiative transfer and dry convective adjustment schemes to our computational setup. Our treatment of radiative transfer assumes stellar irradiation to peak at a wavelength shorter than and distinct from that at which the exoplanet re-emits radiation ("shortwave" versus "longwave"), and also uses a two-stream approximation. Convection is mimicked by adjusting unstable lapse rates to the dry adiabat. The bottom of the atmosphere is bounded by a uniform slab with a finite thermal inertia. For our models of hot Jupiters, we include an analytical formalism for calculating temperature-pressure profiles, in radiative equilibrium, which accounts for the effect of collision-induced absorption via a single parameter. We discuss our results within the context of: the predicted temperature-pressure profiles and the absence/presence of a temperature inversion; the possible maintenance, via atmospheric circulation, of the putative high-altitude, shortwave absorber expected to produce these inversions; the angular/temporal offset of the hot spot from the substellar point, its robustness to our ignorance of hyperviscosity and hence its utility in distinguishing between different hot Jovian atmospheres; and various zonal-mean flow quantities. Our work bridges the gap between three-dimensional simulations which are purely dynamical and those which incorporate multi-band radiative transfer, thus contributing to the construction of a required hierarchy of three-dimensional theoretical models.Comment: Accepted by MNRAS. 28 pages, 19 figures. No changes to last version except for title (to adhere to MNRAS guidelines
    corecore