511 research outputs found

    Single-species dinoflagellate cyst carbon isotope fractionation in core-Top sediments: environmental controls, CO2 dependency and proxy potential

    Get PDF
    Sedimentary bulk organic matter and various molecular organic components exhibit strong CO2-dependent carbon isotope fractionation relative to dissolved inorganic carbon sources. This fractionation (p) has been employed as a proxy for paleo-pCO2. Yet, culture experiments indicate that CO2-dependent p is highly specific at genus and even species level, potentially hampering the use of bulk organic matter and non-species-specific organic compounds. In recent years, significant progress has been made towards a CO2 proxy using controlled growth experiments with dinoflagellate species, also showing highly species-specific p values. These values were, however, based on motile specimens, and it remains unknown whether these relations also hold for the organic-walled resting cysts (dinocysts) produced by these dinoflagellate species in their natural environment. We here analyze dinocysts isolated from core tops from the Atlantic Ocean and Mediterranean Sea, representing several species (Spiniferites elongatus, S. (cf.) ramosus, S. mirabilis, Operculodinium centrocarpum sensu Wall and Dale (1966) (hereafter referred to as O. centrocarpum) and Impagidinium aculeatum) using laser ablation-nano-combustion-gas-chromatography-isotope ratio mass spectrometry (LA/nC/GC-IRMS). We find that the dinocysts produced in the natural environment are all appreciably more 13C-depleted compared to the cultured motile dinoflagellate cells, implying higher overall p values, and, moreover, exhibit large isotope variability. Where several species could be analyzed from a single location, we often record significant differences in isotopic variance and offsets in mean 13C values between species, highlighting the importance of single-species carbon isotope analyses. The most geographically expanded dataset, based on O. centrocarpum, shows that p correlates significantly with various environmental parameters. Importantly, O. centrocarpum shows a CO2-dependent p above g1/4g€¯240g€¯μatm pCO2. Similar to other marine autotrophs, relative insensitivity at low pCO2 is in line with active carbon-concentrating mechanisms at low pCO2, although we here cannot fully exclude that we partly underestimated p sensitivity at low pCO2 values due to the relatively sparse sampling in that range. Finally, we use the relation between p and pCO2 in O. centrocarpum to propose a first pCO2 proxy based on a single dinocyst species

    Changes in the high latitude Southern Hemisphere through the Eocene-Oligocene Transition:a model-data comparison

    Get PDF
    International audienceAbstract. The global and regional climate changed dramatically with the expansion of the Antarctic Ice Sheet at the Eocene–Oligocene transition (EOT). These large-scale changes are generally linked to declining atmospheric pCO2 levels and/or changes in Southern Ocean gateways such as the Drake Passage around this time. To better understand the Southern Hemisphere regional climatic changes and the impact of glaciation on the Earth's oceans and atmosphere at the EOT, we compiled a database of 10 ocean and 4 land-surface temperature reconstructions from a range of proxy records and compared this with a series of fully coupled, low-resolution climate model simulations from two models (HadCM3BL and FOAM). Regional patterns in the proxy records of temperature show that cooling across the EOT was less at high latitudes and greater at mid-latitudes. While certain climate model simulations show moderate–good performance at recreating the temperature patterns shown in the data before and after the EOT, in general the model simulations do not capture the absolute latitudinal temperature gradient shown by the data, being too cold, particularly at high latitudes. When taking into account the absolute temperature before and after the EOT, as well as the change in temperature across it, simulations with a closed Drake Passage before and after the EOT or with an opening of the Drake Passage across the EOT perform poorly, whereas simulations with a drop in atmospheric pCO2 in combination with ice growth generally perform better. This provides further support for previous research that changes in atmospheric pCO2 are more likely to have been the driver of the EOT climatic changes, as opposed to the opening of the Drake Passage

    Effects of depressive symptoms and peripheral DAT methylation on neural reactivity to alcohol cues in alcoholism

    Get PDF
    In alcohol-dependent (AD) patients, alcohol cues induce strong activations in brain areas associated with alcohol craving and relapse, such as the nucleus accumbens (NAc) and amygdala. However, little is known about the influence of depressive symptoms, which are common in AD patients, on the brain’s reactivity to alcohol cues. The methylation state of the dopamine transporter gene (DAT) has been associated with alcohol dependence, craving and depression, but its influence on neural alcohol cue reactivity has not been tested. Here, we compared brain reactivity to alcohol cues in 38 AD patients and 17 healthy controls (HCs) using functional magnetic resonance imaging and assessed the influence of depressive symptoms and peripheral DAT methylation in these responses. We show that alcoholics with low Beck’s Depression Inventory scores (n=29) had higher cue-induced reactivity in NAc and amygdala than those with mild/moderate depression scores (n=9), though subjective perception of craving was higher in those with mild/moderate depression scores. We corroborated a higher DAT methylation in AD patients than HCs, and showed higher DAT methylation in AD patients with mild/moderate than low depression scores. Within the AD cohort, higher methylation predicted craving and, at trend level (P=0.095), relapse 1 year after abstinence. Finally, we show that amygdala cue reactivity correlated with craving and DAT methylation only in AD patients with low depression scores. These findings suggest that depressive symptoms and DAT methylation are associated with alcohol craving and associated brain processes in alcohol dependence, which may have important consequences for treatment. Moreover, peripheral DAT methylation may be a clinically relevant biomarker in AD patients

    Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis: Results of a 2-year study

    Get PDF
    Summary: Strontium ranelate appears to influence more than alendronate distal tibia bone microstructure as assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT), and biomechanically relevant parameters as assessed by micro-finite element analysis (μFEA), over 2years, in postmenopausal osteoporotic women. Introduction: Bone microstructure changes are a target in osteoporosis treatment to increase bone strength and reduce fracture risk. Methods: Using HR-pQCT, we investigated the effects on distal tibia and radius microstructure of strontium ranelate (SrRan; 2g/day) or alendronate (70mg/week) for 2years in postmenopausal osteoporotic women. This exploratory randomized, double-blind trial evaluated HR-pQCT and FEA parameters, areal bone mineral density (BMD), and bone turnover markers. Results: In the intention-to-treat population (n = 83, age: 64 ± 8years; lumbar T-score: −2.8 ± 0.8 [DXA]), distal tibia Cortical Thickness (CTh) and Density (DCort), and cancellous BV/TV increased by 6.3%, 1.4%, and 2.5%, respectively (all P < 0.005), with SrRan, but not with alendronate (0.9%, 0.4%, and 0.8%, NS) (P < 0.05 for all above between-group differences). Difference for CTh evaluated with a distance transformation method was close to significance (P = 0.06). The estimated failure load increased with SrRan (+2.1%, P < 0.005), not with alendronate (−0.6%, NS) (between-group difference, P < 0.01). Cortical stress was lower with SrRan (P < 0.05); both treatments decreased trabecular stress. At distal radius, there was no between-group difference other than DCort (P < 0.05). Bone turnover markers decreased with alendronate; bALP increased (+21%) and serum-CTX-I decreased (−1%) after 2years of SrRan (between-group difference at each time point for both markers, P < 0.0001). Both treatments were well tolerated. Conclusions: Within the constraints of HR-pQCT method, and while a possible artefactual contribution of strontium cannot be quantified, SrRan appeared to influence distal tibia bone microstructure and FEA-determined biomechanical parameters more than alendronate. However, the magnitude of the differences is unclear and requires confirmation with another metho

    Pre-breakup magmatism on the Vøring margin: Insight from new sub-basalt imaging and results from Ocean Drilling program hole 642E

    Get PDF
    Highlights • Sub-basalt imaging improvement on the Vøring Margin • Definition of a new seismic facies unit: the Lower Series Flows • Significant organic carbon content within the melting crustal segment • Apectodinium augustum marker for the PETM is reworked into the Lower Series Flows • The Lower Series Flows, early Eocene in age, predate the Vøring Margin breakup Abstract Improvements in sub-basalt imaging combined with petrological and geochemical observations from the Ocean Drilling Program (ODP) Hole 642E core provide new constraints on the initial breakup processes at the Vøring Margin. New and reprocessed high quality seismic data allow us to identify a new seismic facies unit which we define as the Lower Series Flows. This facies unit is seismically characterized by wavy to continuous subparallel reflections with an internal disrupted and hummocky shape. Drilled lithologies, which we correlate to this facies unit, have been interpreted as subaqueous flows extruding and intruding into wet sediments. Locally, the top boundary of this facies unit is defined as a negative in polarity reflection, and referred as the K-Reflection. This reflection can be correlated with the spatial extent of pyroclastic deposits, emplaced during transitional shallow marine to subaerial volcanic activities during the rift to drift transition. The drilled Lower Series Flows consist of peraluminous, cordierite bearing peperitic basaltic andesitic to dacitic flows interbedded with thick volcano-sedimentary deposits and intruded sills. The peraluminous geochemistry combined with available C (from calcite which fills vesicles and fractures), Sr, Nd, and Pb isotopes data point towards upper crustal rock-mantle magma interactions with a significant contribution of organic carbon rich pelagic sedimentary material during crustal anatexis. From biostratigraphic analyses, Apectodinium augustum was found in the The Lower Series Flows. This species is a marker for the Paleocene – Eocene Thermal Maximum (PETM). However, the absence of very low carbon isotope values (from bulk organic matter), that characterize the PETM, imply that A.augustum was reworked into the early Eocene sediments of this facies unit which predate the breakup time of the Vøring Margin. Finally, a plausible conceptual emplacement model for the Lower Series Flows facies unit is proposed. This model comprises several stages: (1) the emplacement of subaqueous peperitic basaltic andesitic flows intruding and/or extruding wet sediments; (2) a subaerial to shallow marine volcanism and extrusion of dacitic flows; (3) a proto-breakup phase with intense shallow marine to subaerial explosive volcanism responsible for pyroclastic flow deposits which can be correlated with the seismic K-Reflection and (4) the main breakup stage with intense transitional tholeiitic MORB-type volcanism and large subsidence concomitant with the buildup of the Seaward Dipping Reflector wedge

    P11 promoter methylation predicts the antidepressant effect of electroconvulsive therapy

    Get PDF
    Although electroconvulsive therapy (ECT) is among the most effective treatment options for pharmacoresistant major depressive disorder (MDD), some patients still remain refractory to standard ECT practise. Thus, there is a need for markers reliably predicting ECT non/response. In our study, we have taken a novel translational approach for discovering potential biomarkers for the prediction of ECT response. Our hypothesis was that the promoter methylation of p11, a multifunctional protein involved in both depressive-like states and antidepressant treatment responses, is differently regulated in ECT responders vs. nonresponders and thus be a putative biomarker of ECT response. The chronic mild stress model of MDD was adapted with the aim to obtain rats that are resistant to conventional antidepressant drugs (citalopram). Subsequently, electroconvulsive stimulation (ECS) was used to select responders and nonresponders, and compare p11 expression and promoter methylation. In the rat experiments we found that the gene promoter methylation and expression of p11 significantly correlate with the antidepressant effect of ECS. Next, we investigated the predictive properties of p11 promoter methylation in two clinical cohorts of patients with pharmacoresistant MDD. In a proof-of-concept clinical trial in 11 patients with refractory MDD, higher p11 promoter methylation was found in responders to ECT. This finding was replicated in an independent sample of 65 patients with pharmacoresistant MDD. This translational study successfully validated the first biomarker reliably predicting the responsiveness to ECT. Prescreening of this biomarker could help to identify patients eligible for first-line ECT treatment and also help to develop novel antidepressant treatment procedures for depressed patients resistant to all currently approved antidepressant treatments.Peer reviewe

    Early Jurassic large igneous province carbon emissions constrained by sedimentary mercury

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: All data generated or analysed during this study are included in this published paper (and its Supplementary Information) and are available at https://doi.org/10.6084/m9.figshare.23301311.Code availability: The R script to calculate residual Hg for the Mochras dataset is available within the Supplementary Information.Large igneous province eruptions and their carbon emissions often coincide with, and are hypothesized to have driven, severe environmental perturbations in the geological past. However, the vast scale of large igneous provinces and uncertainties in magmatic volatile contents and radioisotopic dates limit our ability to resolve gas emissions in detail over time. Here we employ high-resolution (~5–200 kyr) sedimentary mercury data from the Llanbedr (Mochras Farm) borehole, Wales, to derive quantitative large igneous province degassing estimates over a 20-million-year-long Early Jurassic interval (195–175 million years ago). Intervals of relatively elevated sedimentary mercury coincide with episodes of carbon-cycle change, including the Toarcian Oceanic Anoxic Event (183–182 million years ago). We use excess mercury loading to estimate large igneous province-associated carbon emissions, revealing that multi-millennial episodes of activity plausibly drove recognized pCO2 and temperature increases. However, previous carbon-cycle model-based carbon emission scenarios require faster and larger carbon inputs than our proposed emissions. Resolving this discrepancy may require climate–carbon-cycle feedbacks or co-emitted gases to substantially exacerbate the carbon-cycle response, processes potentially underestimated in current models. Our long and near-continuous record of Early Jurassic large igneous province activity demonstrates mercury’s potential as a tool to resolve past carbon fluxes.European Research Council (ERC)Natural Environment Research Council (NERC
    • …
    corecore