70 research outputs found

    Covid-19 triage in the emergency department 2.0: how analytics and AI transform a human-made algorithm for the prediction of clinical pathways

    Get PDF
    The Covid-19 pandemic has pushed many hospitals to their capacity limits. Therefore, a triage of patients has been discussed controversially primarily through an ethical perspective. The term triage contains many aspects such as urgency of treatment, severity of the disease and pre-existing conditions, access to critical care, or the classification of patients regarding subsequent clinical pathways starting from the emergency department. The determination of the pathways is important not only for patient care, but also for capacity planning in hospitals. We examine the performance of a human-made triage algorithm for clinical pathways which is considered a guideline for emergency departments in Germany based on a large multicenter dataset with over 4,000 European Covid-19 patients from the LEOSS registry. We find an accuracy of 28 percent and approximately 15 percent sensitivity for the ward class. The results serve as a benchmark for our extensions including an additional category of palliative care as a new label, analytics, AI, XAI, and interactive techniques. We find significant potential of analytics and AI in Covid-19 triage regarding accuracy, sensitivity, and other performance metrics whilst our interactive human-AI algorithm shows superior performance with approximately 73 percent accuracy and up to 76 percent sensitivity. The results are independent of the data preparation process regarding the imputation of missing values or grouping of comorbidities. In addition, we find that the consideration of an additional label palliative care does not improve the results

    Bedform migration in a mixed sand and cohesive clay intertidal environment and implications for bed material transport predictions

    Get PDF
    Many coastal and estuarine environments are dominated by mixtures of non-cohesive sand and cohesive mud. The migration rate of bedforms, such as ripples and dunes, in these environments is important in determining bed material transport rates to inform and assess numerical models of sediment transport and geomorphology. However, these models tend to ignore parameters describing the physical and biological cohesion (resulting from clay and extracellular polymeric substances, EPS) in natural mixed sediment, largely because of a scarcity of relevant laboratory and field data. To address this gap in knowledge, data were collected on intertidal flats over a spring-neap cycle to determine the bed material transport rates of bedforms in biologically-active mixed sand-mud. Bed cohesive composition changed from below 2 vol% up to 5.4 vol% cohesive clay, as the tide progressed from spring towards neap. The amount of EPS in the bed sediment was found to vary linearly with the clay content. Using multiple linear regression, the transport rate was found to depend on the Shields stress parameter and the bed cohesive clay content. The transport rates decreased with increasing cohesive clay and EPS content, when these contents were below 2.8 vol% and 0.05 wt%, respectively. Above these limits, bedform migration and bed material transport was not detectable by the instruments in the study area. These limits are consistent with recently conducted sand-clay and sand-EPS laboratory experiments on bedform development. This work has important implications for the circumstances under which existing sand-only bedform migration transport formulae may be applied in a mixed sand-clay environment, particularly as 2.8 vol% cohesive clay is well within the commonly adopted definition of “clean sand”

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.Peer reviewe

    Trends in template/fragment-free protein structure prediction

    Get PDF
    Predicting the structure of a protein from its amino acid sequence is a long-standing unsolved problem in computational biology. Its solution would be of both fundamental and practical importance as the gap between the number of known sequences and the number of experimentally solved structures widens rapidly. Currently, the most successful approaches are based on fragment/template reassembly. Lacking progress in template-free structure prediction calls for novel ideas and approaches. This article reviews trends in the development of physical and specific knowledge-based energy functions as well as sampling techniques for fragment-free structure prediction. Recent physical- and knowledge-based studies demonstrated that it is possible to sample and predict highly accurate protein structures without borrowing native fragments from known protein structures. These emerging approaches with fully flexible sampling have the potential to move the field forward

    The CMS Phase-1 pixel detector upgrade

    Get PDF
    The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013–2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking.Peer reviewe

    Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    Get PDF
    • 

    corecore