162 research outputs found

    Hypothalamic AGRP mRNA is elevated during natural and stress-induced anorexia

    Get PDF
    As part of their natural lives, animals can undergo periods of voluntarily reduced food intake and body weight (i.e. animal anorexias) that are beneficial for survival or breeding, such as during territorial behaviour, hibernation, migration and incubation of eggs. For incubation, a change in the defended level of body weight or ‘sliding set point’ appears to be involved, although the neural mechanisms reponsible for this are unknown. We investigated how neuropeptide gene expression in the arcuate nucleus of the domestic chicken responded to a 60–70% voluntary reduction in food intake measured both after incubation and after an environmental stressor involving transfer to unfamiliar housing. We hypothesised that gene expression would not change in these circumstances because the reduced food intake and body weight represented a defended level in birds with free access to food. Unexpectedly, we observed increased gene expression of the orexigenic peptide agouti‐related peptide (AgRP) in both incubating and transferred animals compared to controls. Also pro‐opiomelanocortin (POMC) mRNA was higher in incubating hens and significantly increased 6 days after exposure to the stressor. Conversely expression of neuropeptide Y and cocaine‐ and amphetamine‐regulated transcript gene was unchanged in both experimental situations. We conclude that AgRP expression remains sensitive to the level of energy stores during natural anorexias, which is of adaptive advantage, although its normal orexigenic effects are over‐ridden by inhibitory signals. In the case of stress‐induced anorexia, increased POMC may contribute to this inhibitory role, whereas, for incubation, reduced feeding may also be associated with increased expression in the hypothalamus of the anorexigenic peptide vasoactive intestinal peptide

    Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction.

    Get PDF
    BACKGROUND: The mammalian adipose tissue plays a central role in energy-balance control, whereas the avian visceral fat hardly expresses leptin, the key adipokine in mammals. Therefore, to assess the endocrine role of adipose tissue in birds, we compared the transcriptome and proteome between two metabolically different types of chickens, broilers and layers, bred towards efficient meat and egg production, respectively. RESULTS: Broilers and layer hens, grown up to sexual maturation under free-feeding conditions, differed 4.0-fold in weight and 1.6-fold in ovarian-follicle counts, yet the relative accumulation of visceral fat was comparable. RNA-seq and mass-spectrometry (MS) analyses of visceral fat revealed differentially expressed genes between broilers and layers, 1106 at the mRNA level (FDR ≤ 0.05), and 203 at the protein level (P ≤ 0.05). In broilers, Ingenuity Pathway Analysis revealed activation of the PTEN-pathway, and in layers increased response to external signals. The expression pattern of genes encoding fat-secreted proteins in broilers and layers was characterized in the RNA-seq and MS data, as well as by qPCR on visceral fat under free feeding and 24 h-feed deprivation. This characterization was expanded using available RNA-seq data of tissues from red junglefowl, and of visceral fat from broilers of different types. These comparisons revealed expression of new adipokines and secreted proteins (LCAT, LECT2, SERPINE2, SFTP1, ZP1, ZP3, APOV1, VTG1 and VTG2) at the mRNA and/or protein levels, with dynamic gene expression patterns in the selected chicken lines (except for ZP1; FDR/P ≤ 0.05) and feed deprivation (NAMPT, SFTPA1 and ZP3) (P ≤ 0.05). In contrast, some of the most prominent adipokines in mammals, leptin, TNF, IFNG, and IL6 were expressed at a low level (FPKM/RPKM< 1) and did not show differential mRNA expression neither between broiler and layer lines nor between fed vs. feed-deprived chickens. CONCLUSIONS: Our study revealed that RNA and protein expression in visceral fat changes with selective breeding, suggesting endocrine roles of visceral fat in the selected phenotypes. In comparison to gene expression in visceral fat of mammals, our findings points to a more direct cross talk of the chicken visceral fat with the reproductive system and lower involvement in the regulation of appetite, inflammation and insulin resistance.The study was supported by the Israel Academy of Sciences grants no. 876/ 14 and 1294/17, and Chief Scientist of the Israeli Ministry of Agriculture 0469/14 (to MFE and ES)

    Detection of adeno-associated virus type 2 genome in cervical carcinoma

    Get PDF
    Adeno-associated virus (AAV) can impair the replication of other viruses. Adeno-associated virus seroprevalences have been reported to be lower among women with cervical cancer. In-vitro, AAV can interfere with the production of human papillomavirus virions. Adeno-associated virus-2 DNA has also been detected in cervical cancer tissue, although not consistently. To evaluate the role of AAV infection in relation to invasive cervical cancer, we performed a nested case–control study within a retrospectively followed population-based cohort. A total of 104 women who developed invasive cervical cancer on average 5.6 years of follow-up (range: 0.5 months–26.2 years) and 104 matched control-women who did not develop cervical cancer during the same follow-up time were tested for AAV and human papillomavirus by polymerase chain reaction. At baseline, two (2%) case-women and three (3%) control-women were positive for AAV-2 DNA. At the time of cancer diagnosis, 12 (12%) case-women and 3 (3%) matched control-women were positive for AAV-2 DNA. Persisting AAV infection was not evident. In conclusion, AAV-2 DNA was present in a low proportion of cervical cancers and we found no evidence that the presence of AAV in cervical smears of healthy women would be associated with reduced risk of cervical cancer

    Regulation of Agouti-Related Protein and Pro-Opiomelanocortin Gene Expression in the Avian Arcuate Nucleus

    Get PDF
    The arcuate nucleus is generally conserved across vertebrate taxa in its neuroanatomy and neuropeptide expression. Gene expression of agouti-related protein (AGRP), neuropeptide Y (NPY), pro-opiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) has been established in the arcuate nucleus of several bird species and co-localization demonstrated for AGRP and NPY. The proteins encoded by these genes exert comparable effects on food intake in birds after central administration to those seen in other vertebrates, with AGRP and NPY being orexigenic and CART and α-melanocyte-stimulating hormone anorexigenic. We have focused on the measurement of arcuate nucleus AGRP and POMC expression in several avian models in relation to the regulation of energy balance, incubation, stress, and growth. AGRP mRNA and POMC mRNA are, respectively, up- and downregulated after energy deprivation and restriction. This suggests that coordinated changes in the activity of AGRP and POMC neurons help to drive the homeostatic response to replace depleted energy stores in birds as in other vertebrates. While AGRP and POMC expression are generally positively and negatively correlated with food intake, respectively, we review here situations in some avian models in which AGRP gene expression is dissociated from the level of food intake and may have an influence on growth independent of changes in appetite. This suggests the possibility that the central melanocortin system exerts more pleiotropic functions in birds. While the neuroanatomical arrangement of AGRP and POMC neurons and the sensitivity of their activity to nutritional state appear generally conserved with other vertebrates, detailed knowledge is lacking of the key nutritional feedback signals acting on the avian arcuate nucleus and there appear to be significant differences between birds and mammals. In particular, recently identified avian leptin genes show differences between bird species in their tissue expression patterns and appear less closely linked in their expression to nutritional state. It is presently uncertain how the regulation of the central melanocortin system in birds is brought about in the situation of the apparently reduced importance of leptin and ghrelin compared to mammals

    Gene Transfer to Chicks Using Lentiviral Vectors Administered via the Embryonic Chorioallantoic Membrane

    Get PDF
    The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides

    The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment

    Full text link
    Two experiments were designed to assess the effect of a “novel” environment on the development of sensitization to the psychomotor activating effects of d -amphetamine. In the first experiment, rats with a unilateral 6-hydroxydopamine lesion of the mesostriatal dopamine system received ten daily injections of amphetamine (2 mg/kg), either in their home cages or in novel test cages. The home and novel cages were physically identical (cylindrical transparent buckets), but one group lived and were tested in these cages, whereas the other group was transported from the stainless steel hanging cages where they lived to these novel test cages, for each test session. The first injection of amphetamine produced significantly more rotational behavior in animals tested in a novel environment than in animals tested at home. In addition, animals tested in a novel environment showed greater sensitization than animals tested at home, so the difference between the two groups was even more pronounced following the last injection. In a second experiment, locomotor activity was quantified in rats that received ten injections of either saline or 1.5 mg/kg amphetamine, in their home cages or in a physically identical novel environment. Again, there was a significantly greater locomotor response to the first injection of amphetamine, and greater sensitization, in animals tested in a novel environment than in animals tested at home. These data indicate that environmental factors can exert a large effect on the susceptibility to sensitization, and mechanisms by which this may occur are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46345/1/213_2005_Article_BF02246217.pd

    Quack leptin

    No full text
    corecore