13,059 research outputs found

    Binary Mixtures of Particles with Different Diffusivities Demix

    Get PDF
    The influence of size differences, shape, mass and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing of our predictions are outlined.Comment: 5 figures in main text, 8 figures in Supplemental Materia

    Current reversal and exclusion processes with history-dependent random walks

    Get PDF
    A class of exclusion processes in which particles perform history-dependent random walks is introduced, stimulated by dynamic phenomena in some biological and artificial systems. The particles locally interact with the underlying substrate by breaking and reforming lattice bonds. We determine the steady-state current on a ring, and find current-reversal as a function of particle density. This phenomenon is attributed to the non-local interaction between the walkers through their trails, which originates from strong correlations between the dynamics of the particles and the lattice. We rationalize our findings within an effective description in terms of quasi-particles which we call front barriers. Our analytical results are complemented by stochastic simulations.Comment: 5 pages, 6 figure

    The use of happiness research for public policy

    Get PDF
    Research on happiness tends to follow a "benevolent dictator" approach where politicians pursue people's happiness. This paper takes an antithetic approach based on the insights of public choice theory. First, we inquire how the results of happiness research may be used to improve the choice of institutions. Second, we show that the policy approach matters for the choice of research questions and the kind of knowledge happiness research aims to provide. Third, we emphasize that there is no shortcut to an optimal policy maximizing some happiness indicator or social welfare function since governments have an incentive to manipulate this indicator

    Entropic forces generated by grafted semiflexible polymers

    Get PDF
    The entropic force exerted by the Brownian fluctuations of a grafted semiflexible polymer upon a rigid smooth wall are calculated both analytically and by Monte Carlo simulations. Such forces are thought to play an important role for several cellular phenomena, in particular, the physics of actin-polymerization-driven cell motility and movement of bacteria like Listeria. In the stiff limit, where the persistence length of the polymer is larger than its contour length, we find that the entropic force shows scaling behavior. We identify the characteristic length scales and the explicit form of the scaling functions. In certain asymptotic regimes we give simple analytical expressions which describe the full results to a very high numerical accuracy. Depending on the constraints imposed on the transverse fluctuations of the filament there are characteristic differences in the functional form of the entropic forces; in a two-dimensional geometry the entropic force exhibits a marked peak.Comment: 21 pages, 18 figures, minor misprints correcte

    Conformations of confined biopolymers

    Get PDF
    Nanoscale and microscale confinement of biopolymers naturally occurs in cells and has been recently achieved in artificial structures designed for nanotechnological applications. Here, we present an extensive theoretical investigation of the conformations and shape of a biopolymer with varying stiffness confined to a narrow channel. Combining scaling arguments, analytical calculations, and Monte Carlo simulations, we identify various scaling regimes where master curves quantify the functional dependence of the polymer conformations on the chain stiffness and strength of confinement.Comment: 5 pages, 4 figures, minor correction

    Fluctuation-Dissipation Theorem for the Microcanonical Ensemble

    Get PDF
    A derivation of the Fluctuation-Dissipation Theorem for the microcanonical ensemble is presented using linear response theory. The theorem is stated as a relation between the frequency spectra of the symmetric correlation and response functions. When the system is not in the thermodinamic limit, this result can be viewed as an extension of the fluctuation-dissipation relations to a situation where dynamical fluctuations determine the response. Therefore, the relation presented here between equilibrium fluctuations and response can have a very different physical nature from the usual one in the canonical ensemble. These considerations imply that the Fluctuation-Dissipation Theorem is not restricted to the context of thermal equilibrium, where it is usually derived. Dispersion relations and sum rules are also obtained and discussed in the present case. Although analogous to the Kramers-Kronig relations, they are not related to the frequency spectrum but to the energy dependence of the response function.Comment: 15 pages, v3: final version, new text added, new reference

    Force-Velocity Relations of a Two-State Crossbridge Model for Molecular Motors

    Full text link
    We discuss the force-velocity relations obtained in a two-state crossbridge model for molecular motors. They can be calculated analytically in two limiting cases: for a large number and for one pair of motors. The effect of the strain-dependent detachment rate on the motor characteristics is studied. It can lead to linear, myosin-like, kinesin-like and anomalous curves. In particular, we specify the conditions under which oscillatory behavior may be found.Comment: 5 pages, 4 figures, REVTeX; thoroughly revised version; also available at http://www.physik.tu-muenchen.de/~frey

    Exchange Bias Effect in Au-Fe3O4 Nanocomposites

    Full text link
    We report exchange bias (EB) effect in the Au-Fe3O4 composite nanoparticle system, where one or more Fe3O4 nanoparticles are attached to an Au seed particle forming dimer and cluster morphologies, with the clusters showing much stronger EB in comparison with the dimers. The EB effect develops due to the presence of stress in the Au-Fe3O4 interface which leads to the generation of highly disordered, anisotropic surface spins in the Fe3O4 particle. The EB effect is lost with the removal of the interfacial stress. Our atomistic Monte-Carlo studies are in excellent agreement with the experimental results. These results show a new path towards tuning EB in nanostructures, namely controllably creating interfacial stress, and open up the possibility of tuning the anisotropic properties of biocompatible nanoparticles via a controllable exchange coupling mechanism.Comment: 28 pages, 6 figures, submitted to Nanotechnolog

    Long-Range Ordering of Vibrated Polar Disks

    Get PDF
    Vibrated polar disks have been used experimentally to investigate collective motion of driven particles, where fully-ordered asymptotic regimes could not be reached. Here we present a model reproducing quantitatively the single, binary and collective properties of this granular system. Using system sizes not accessible in the laboratory, we show in silico that true long-range order is possible in the experimental system. Exploring the model's parameter space, we find a phase diagram qualitatively different from that of dilute or point-like particle systems.Comment: 5 pages, 4 figure
    • …
    corecore