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The influence of size differences, shape, mass, and persistent motion on phase separation in binary
mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in
binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles,
which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads
to phase separation for systems above a critical size: A single close-packed cluster made up of the less
diffusive species emerges. Experiments for testing our predictions are outlined.
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Binary mixtures consisting of nonadhesive particles in
thermal equilibrium can demix if their constituents differ in
size [1–8]. This demixing is explained in terms of an
increase in the entropy of the system. However, non-
adhesive binary mixtures that are far from thermal equi-
librium may demix even when the particles are of equal
size. Examples include mixtures of active and Brownian
particles [9,10] and shaken granular media consisting of
particles of different masses [11,12]. While the impact of
activity on the phase separation dynamics has been fre-
quently addressed [9,10], the specific role of differences in
the diffusion constants has not yet been investigated.
Here, we study conditions under which diffusivity

differences among nonadhesive spherical particles of equal
size and shape can lead to demixing. We investigate binary
mixtures of two particle species which differ only with
respect to their diffusion constants and interact by a short-
ranged repulsive force. We find that demixing is promoted
for large relative differences in the diffusion constants and
high overall packing fractions. The binary mixture exhibits
phase separation into a solidlike cluster of the species with
the lower diffusion constant (“cold” particles) and a
gaseous phase of the “hot” particles with the higher
diffusivity; see Fig. 1. As discussed below, these predic-
tions may be tested using various experimental systems
including mixtures of granular disks [11–14] or mixtures of
photoactivated colloids [15,16].
The Brownian dynamics of the binary system of Nhot hot

and Ncold cold particles is described by a set of coupled
Langevin equations: ∂tri ¼ μ

P
N
j¼1 FijðtÞ þ ηiðtÞ, where

the sum runs over all particles i ∈ f1;…; Ng with

N ¼ Nhot þ Ncold. All particles have the same mobility μ
but differ in the value of their diffusion constants,
Di ∈ fDhot; Dcoldg, which determine the respective
magnitude of the spatially isotropic and Gaussian white
noise hηiαðtÞηjβðt0Þi ¼ 2Diδijδαβδðt − t0Þ. The interactions
between the spherical particles of radius a are taken
as short-ranged harmonic repulsive forces: Fij ¼
kð2a − rijÞr̂ij if particles overlap (rij < 2a), and Fij ¼ 0

otherwise. Here, k denotes the spring constant and rij ¼
jri − rjj the interparticle distance [r̂ij ¼ ðri − rjÞ=rij]. In
order to mimic hard particles, we use large values of k · μ,
thus ensuring that particle overlaps decay quickly (see
Supplemental Material [17]). Recently, a similar model has
been used to study clustering near a hard wall [18]. For

FIG. 1. Snapshots of particle configurations in a binary mixture
of 500 hot particles (orange, light gray) and 500 cold particles
(blue, dark gray) with diffusion constants that differ by a factor
D ¼ Dcold=Dhot ¼ 10−3 for a packing fraction ϕ ¼ 0.2 at (a) early
times t ¼ 6 × 103a2=Dhot and (b) late times t ¼ 6.4 ×
104 a2=Dhot of the coarsening dynamics. Initially, small shapeless
clusters of cold particles form, which later coalesce and merge
into a single cluster. Inset: Close-up of cluster with color-coded
local hexatic order parameter Ψ6;i ¼ jN ij−1

P
j∈N i

eι6θij, with N i

denoting the Voronoi neighbors of particle i, and θij is the “bond”
angle between particles i and j.
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specificity, we consider Nhot ¼ Ncold; we have checked that
changing the ratio of hot to cold particles by a factor of 2
in either direction does not lead to qualitatively different
results. As control parameters we consider the ratio of
diffusion constants D≔Dcold=Dhot and the packing fraction
ϕ≔Nπa2=L2, where L is the system size of the simulation
box with periodic boundary conditions.
Our Brownian dynamics simulations show that for

sufficiently large relative differences in the diffusion con-
stants an initially random distribution of hot and cold
particles spontaneously segregates into a solidlike phase of
cold particles surrounded by a gaslike phase of mainly hot
particles; see Figs. 1(a) and 1(b) and Supplemental Material
for a video [17]. This clustering instability is consistent
with analytic predictions based on a low density expansion
for the same system [19]. In our simulations the phase
separation process begins with the formation of small,
shapeless clusters of cold particles of varying size. We
observe coarsening dynamics as these clusters both coa-
lesce and continue to incorporate individual particles,
finally leading to a single, spherical cluster at large time
scales. The bulk of this cluster exhibits hexagonal order
[inset of Fig. 1(b) and Supplemental Material [17], Fig. S8].
Moreover, we have measured the number of cold particles
in the largest cluster, M∞, at time scales where the system
has reached a steady state. Figure 2 shows the fraction
of cold particles in the largest cluster at steady state,
M∞=Ncold, as a function of D for four packing fractions
ϕ. We find that for small D almost all cold particles end up
in the largest cluster. However, with increasing D we find a
pronounced drop inM∞=Ncold, which sets in at a point that
strongly depends on the packing fraction ϕ. This suggests

that there is a threshold valueDcritðϕÞ, which marks a phase
transition from an isotropic phase, where cold and hot
particles are homogeneously mixed, to a demixed phase, in
which they are segregated into a solid phase of cold and a
gaseous phase of mainly hot particles.
To further quantify this phase separation scenario we

explored the dynamics of cluster formation and growth.
Particle motions are determined by intrinsic diffusion
(with diffusion constant Dhot or Dcold) and particle colli-
sions. For Dhot ≫ Dcold, movement of cold particles is
primarily driven by collisions with hot particles, leading
to an effective mesoscopic diffusion constant Deff of the
cold particles. Our simulations show that for a single cold
particle immersed in a “bath” of hot particles at packing
fraction ϕhot, the effective diffusion constant can be
approximated by Deff ¼ γϕhotDhot, with γ ≈ 0.28; see
Supplemental Material [17], Fig. S1. As illustrated in
Fig. 3(a), four qualitatively different regimes can be
discerned for the phase separation process. Initially, on a
time scale determined by the collision time τc ¼
L2=ð4NcoldDeffÞ, there is fast assembly of many small
clusters of cold particles. These small clusters coexist for an
extended lag time τl, which typically is much longer than

FIG. 2. Fraction of cold particles in the largest cluster of the
system, averaged after saturation M∞=Ncold (symbols) as a
function of the diffusion constant ratio D ¼ Dcold=Dhot of cold
and hot particles for systems with Ncold ¼ Nhot ¼ 300 particles.
Different colors correspond to different packing fractions ϕ.
Clustering is also observed for packing fractions larger than
depicted here (see Supplemental Material [17], Fig. S6). Values
M∞=Ncold ≳ 0.8 (shaded region) indicate that a single large
and stable cluster of cold particles has formed. The saturation
value M∞ was obtained from ten realizations. Solid lines show
solutions of Eq. (1) for t → ∞, where the parameter αint was fitted
to a single set of D and ϕ (indicated by an asterisk); see main text
and Supplemental Material [17].

FIG. 3. (a) Time evolution of the fraction of cold particles in the
largest cluster M=Ncold in a system of Nhot ¼ Ncold ¼ 300 hot
and cold particles with diffusion constant ratioD ¼ 1.5 × 10−3 at
total packing fraction ϕ ¼ 0.2. Each color (gray shade) depicts a
single realization of initially randomly distributed particles. The
lag time τl and the time for cluster growth τg is shown for the
rightmost curve. The dashed line indicates ten collision times τc.
(b) Cluster size distributions of cold particles for systems with
ϕ ¼ 0.2 and D ¼ 0. Different symbols and colors correspond to
different particle numbers; see legend of (c). (c) Time traces of
M=Ncold [same system as (b)]. Black solid line: Numerical
solution of Eq. (1) with parameters as in Supplemental Material
[17], Fig. S2, started after the corresponding lag time.
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the collision time τc. Subsequently, for the system sizes
considered, we observe coarsening dynamics which finally
leads to the formation of a single cluster whose growth
saturates due to depletion of cold particles. While the
duration of the growth period τg is similar for different
realizations of the stochastic dynamics, the lag time τl
varies significantly.
The large variance in τl suggests that the coarsening

dynamics is preceded by a cluster nucleation phase; i.e., a
cluster must first reach a critical size before it can stably
grow. As this implies that no stable clusters can emerge in
finite systems with particle numbers close to or below the
number required to form a viable nucleus, we measured
the weighted cluster size distribution pðmÞ ¼ mnm=Ncold
(nm is the frequency of clusters of size m of cold particles)
for different particle numbers N while keeping the param-
eters ϕ ¼ 0.2, D ¼ 0, and Nhot=Ncold ¼ 1 fixed. We find
that for small systems (Ncold ¼ 50), there is a broad
distribution of cluster sizes originating from the continuous
assembly and disassembly of clusters [Figs. 3(b) and 3(c)],
while for larger systems (Ncold ¼ 150), a single and stable
cluster can form. We conclude that coarsening indeed
requires the formation of a critical nucleus whose size is
of the order of Ncold ≈ 150 for the parameters considered
in Figs. 3(b) and 3(c).
After nucleation, growth of the cluster is driven by a

balance of attachment and detachment processes. To
quantify these processes we develop a phenomenological
mean-field theory for the dynamics of the cluster mass
MðtÞ. Assume that the cluster is approximately spherical
with radius R and hexagonally packed with packing
fraction η ¼ 0.9 [see Fig. 1(a), inset] such that
Ma2 ≈ ηπR2. In two dimensions, the flux of diffusing
particles towards a sphere of radius R scales as the diffusion
constant times the area density of the particles and is
independent of R [20]. Hence, the rate of accretion of cold
particles with effective diffusion constant Deff scales with
ωattðMÞ ¼ DeffðNcold −MÞ=L2, where Ncold −M is the
number of cold particles outside the cluster. Detachment
may be mediated either through collisions of hot particles
with the cluster surface or through intrinsic diffusion of
cold particles. Similarly to the case of cold particle attach-
ment, the detachment rate due to collisions with hot
particles scales with ωcoll ¼ DhotNhot=L2, i.e., the flux of
hot particles towards the cluster. For the detachment rate
due to intrinsic diffusion, we take ωintðMÞ ¼ Nσ=ðϕhotτintÞ,
where τint ¼ a2=Dcold is the time it takes a cold particle to
leave the cluster due to its intrinsic motion and Nσ ¼
πR=a ≈ π

ffiffiffiffiffiffiffiffiffiffi
M=η

p
is the number of cold particles on the

cluster surface. Moreover, because hot particles block cold
particles from diffusing away from the cluster, we multiply
the corresponding time scale by ϕhot to account for this
caging effect.
The three processes combined lead to the time evolution

of the cluster mass:

∂tM ¼ αattωattðMÞ − αcollωcoll − αintωintðMÞ; ð1Þ

where αatt, αcoll, and αint denote dimensionless coefficients,
which were determined by fitting the solution of Eq. (1)
to time traces MðtÞ obtained from ten independent
realizations of our Brownian dynamics simulation for a
single parameter set; see Supplemental Material [17],
Fig. S2, for details. We obtain αatt ¼ 82.5, αcoll ¼ 0.03,
and αint ¼ 7.5 × 10−3. Using these values we find that
the solutions to Eq. (1) are in good agreement with the
simulation time traces for different packing fractions or
cold particle diffusion constants [Fig. 3(c) and Fig. S2 in
the Supplemental Material [17]]. Overall, this analysis
shows that cluster growth is limited by collision-mediated
diffusion of cold particles, and that cold surface particles
are strongly attached to the cluster structure, with detach-
ment events being rare. Moreover, the mean-field analysis
also gives the correct saturation values for the cluster mass
M∞ in the regimewhere a single and stable cluster develops
[Fig. 2, shaded area]. As expected, outside of this regime
Eq. (1) deviates from the simulations, since it does not take
the coexistence of multiple clusters of fluctuating size and
shape into account. A complete theory of cluster growth
would need to incorporate cluster fragmentation and
coalescence as well as Ostwald ripening [21].
The observed saturation of cluster growth is a conse-

quence of the finite numbers of cold particles in the systems
considered in our computer simulations (see Supplemental
Material [17]). However, for large systems, one expects that
multiple clusters of cold particles should form throughout
the system. Initially, they will grow due to accumulation of
cold particles from the immediate vicinity as described
above. At later stages, these clusters will, however, exhibit
coarsening dynamics according to one or both of the
following two principal mechanisms. Either there will be
growth of larger clusters at the expense of smaller clusters
(Ostwald ripening) [22], or clusters will meet by diffusion
and then coalesce. While our simulations do not allow us to
draw any definite conclusion with respect to the impact of
Ostwald ripening, we can estimate the coarsening dynamics
due to cluster coalescence. To this end, we measured the
diffusion constant of clusters consisting of cold particles as
a function of their size. We find that the diffusion constant
DclðNcoldÞ of saturated clusters scales in inverse proportion
to Ncold [Fig. 4]. In terms of cluster radius R, this implies
that DclðRÞ ∼ R−2, which suggests a “surface diffusion”
mechanism for cluster diffusion [23]: Single cold particles
detach from the cluster surface very rapidly, then slowly
diffuse away from the cluster surface and reattach to
another surface site [23,24]. This is consistent with our
model lacking any explicit attractive interactions between
cold particles and their slow effective diffusion. We found
that a cluster moving via surface diffusion would grow
through coalescence via RðtÞ ∼ t1=4; see Supplemental
Material [17].
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Finally, we asked why—despite the lack of any explicit
attractive interaction—there is any clustering of cold
particles at all. To this end, we considered two cold
particles immersed in a “bath” of hot particles. As illus-
trated in Fig. 5(a), in any given time interval hot particles
cover much longer distances than cold particles, and hence
will frequently collide with the two cold particles. In
particle configurations, where two cold particles are close

together, these collisions will tend to keep them that way, a
phenomenon reminiscent of high-density caging of hard
disks [25]. To quantify the degree of caging created by hot
particles, we determined the radial distribution function
gðrÞ, starting from a random configuration; see Fig. 5(b).
For Dcold ≪ Dhot, gðrÞ clearly shows that distances
between cold particles are likely to be shorter than when
Dcold ¼ Dhot, where gðrÞ is essentially flat. We conclude
that there is an effective attractive interaction between
colder particles due to collisions with the surrounding hot
particles which essentially act as a cage. This caging effect
is fundamentally different from the well-known depletion
interaction observed in colloidal suspensions containing
particles with markedly different sizes [8,26]. According to
Asakura and Oosawa [1], the effective interaction between
the larger particles is mainly an entropic effect: When the
large particles are close together, the regions inaccessible to
the smaller particles overlap, leading to an increase in the
entropy of the system.
Demixing in binary mixtures consisting of particles with

different diffusion constants is fundamentally different
from phase separation in mixtures of Brownian (passive)
and self-propelled (active) particles, where the coexisting
gas and solidlike phase contain both particle species [10].
In these mixtures of active and passive particles, the gas-
solid phase separation occurs at very high Péclet numbers,
Pe ¼ 3l=ð2aÞ (where l is the persistence length of the
active particles), and even in the absence of passive
particles [16,27,28]. In contrast, in our simulations the
binary nature of the system is paramount since the
differences in activity between the species drive the phase
separation. Moreover, the binary demixing discussed here
occurs at Pe ¼ 0. To compare our findings to the clustering
at large Péclet numbers in active systems, we also studied
the case of nonzero Péclet numbers. To this end, we
performed numerical studies of binary mixtures consisting
of purely passive and active self-propelled particles without
translational diffusion; note that translational noise is
not a requirement for phase separation in simulations of
Langevin equations [29,30]. For the model and the results,
see Supplemental Material [17], Figs. S4 and S5. We find
that demixing between cold and hot particles occurs even
for Pe > 0. However, increasing the Péclet number further,
demixing vanishes, while for very large values, we observe
coexisting gas and solidlike phases which contain both
particle species, reminiscent of the findings in Ref. [10].
This suggests that demixing of passive and active particles
is driven by different mechanisms depending on the value
of the Péclet number.
Our predictions for binary mixtures consisting of par-

ticles with different diffusion constants can be readily
tested for mixtures of granular disks or suspensions of
driven colloidal particles. The key ingredient for each
system is a local mechanism that enables the particles to
move with different diffusion constants. In the case of

FIG. 4. Diffusion constant for a saturated cluster of cold
particles Dcl in units of Dhot as a function of the total number
of cold particles Ncold for various packing fractions ϕ indicated
in the graph; the intrinsic diffusion constant of cold particles
was chosen as Dcold ¼ 0. The scaling remains unchanged for
Dcold > 0 (Supplemental Material [17], Fig. S7). Error bars
indicate 1 standard deviation of the distribution of Dcl values
obtained from ten independent simulations. The three straight lines
indicate power law scalingsDcl ∼ N−κ

cold: κ ¼ 1.5 (dashed), κ ¼ 1.0
(solid), κ ¼ 0.5 (dotted). The best fit was obtained for κ ¼ 1.

FIG. 5. (a) Illustration of caging. Two cold particles (blue, dark
gray) are initially (t ¼ 0) in contact and homogeneously sur-
rounded by hot particles (orange, light gray). The figure shows
two simulations at time t ¼ 2a2=Dcold with the same diffusion
constant of cold particles Dcold. For each time increment of
0.01a2=Dcold a transparent disk with radius a is drawn, such that
the density of disks depicts the positions of particles during
the simulation. Top: Simulation with equal diffusion constants
Dhot ¼ Dcold. Bottom: Same simulation but with increased
diffusion constant of hot particles Dhot ¼ 10Dcold. (b) Radial
pair distribution function gðrÞ for two cold particles surrounded
by 11 hot particles at ϕ ¼ 0.13 for three different diffusion
constant ratios D ¼ Dcold=Dhot. Solid black line: gðrÞ of hard
disks in the dilute limit (ϕ → 0).
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vibrated colloids, a horizontal plate is attached to a shaker,
which induces vertical and/or horizontal oscillations.
By capping the plate with a lid, one can restrict vertical
motion sufficiently to effectively confine the colloids to
two dimensions [13]. Systems of two disklike species of
identical size but with different diffusivity can be imple-
mented by using particles with differently profiled bases
[14,31,32], different materials [11,12], or, potentially,
different heights. It should be ruled out that the collision
dynamics, e.g., between particles of different weight, is the
cause for clustering. Driven colloidal suspensions represent
another possible realization of our model [15,16,33]. For
example, consider a system consisting of synthetic photo-
activated colloidal particles [15] or nonisotropically coated
Janus particles [16,34], to which a second species is added
that exhibits only Brownian motion. Given that the per-
sistence length of the active species is less than its radius,
this provides two species with different diffusion constants.
While our computational results show that differences in

diffusion constant alone suffice to drive phase separation in
binary mixtures, the phase behavior in actual systems may
be even more intriguing. It will be interesting to explore
how differences in the degree of persistence in the particle
trajectories—especially in the regime intermediate between
the one studied here and in Ref. [10]—affect the system’s
dynamics and ensuing steady states. Another promising
route is to explore how the effective attraction between cold
particles, mediated by caging through hot particles, is
affected by additional interactions such as entropic forces
mediated by differences in the size and shape of the
particles.
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