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The entropic force exerted by the Brownian fluctuations of a grafted semiflexible polymer upon a rigid
smooth wall are calculated both analytically and by Monte Carlo simulations. Such forces are thought to play
an important role for several cellular phenomena, in particular, the physics of actin-polymerization-driven cell
motility and movement of bacteria like Listeria. In the stiff limit, where the persistence length of the polymer
is larger than its contour length, we find that the entropic force shows scaling behavior. We identify the
characteristic length scales and the explicit form of the scaling functions. In certain asymptotic regimes, we
give simple analytical expressions which describe the full results to a very high numerical accuracy. Depending
on the constraints imposed on the transverse fluctuations of the filament, there are characteristic differences in
the functional form of the entropic forces. In a two-dimensional geometry, the entropic force exhibits a marked
peak.
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I. INTRODUCTION

In a cellular environment, soft objects like membranes
and polymers are subject to Brownian motion. As a result
there are interactions between them which are entropic in
origin, i.e., a consequence of constraints imposed on the
Brownian fluctuations. For example, two parallel membranes
repel each other entropically with a potential that falls off
like a power law in the distance between them �1�. Similarly,
thermally fluctuating biopolymers like F-actin and microtu-
bules may exert entropic forces on membranes or some other
obstacles; for an illustration see Fig. 1. Though due to the
same thermal fluctuations, such forces have to be distin-
guished from forces obtained by pulling on a biopolymer
�2,3�. It turns out that the force-distance curves of these two
cases have no resemblance at all in a regime where thermal
fluctuations play a role, which is generically the case for all
cytoskeletal filaments. Both types of forces are thought to
play a prominent role in cell motility and movement of
pathogens like Listeria monocytogenes, that propel itself
through the cytoplasm of infected cells by constructing be-
hind it a polymerized tail of cross-linked actin filaments �4�.
Similarly, in a crawling cell, the force generated from the
polymerization of a collection of actin fibers is responsible
for the protrusion of cell membrane, which are known as
lamellipodia, filopodia, or microspikes according to their
shapes �5�. It seems that polymerizing networks of actin fila-
ments are capable of exerting significant mechanical force,
which are used by eukaryotic cells and their prokaryotic
pathogens to change shape or move.

In this paper, we will not enter into the debate on the
particular force generating mechanism responsible for all
these different types of cell motility. It seems plausible to us
that a final model for a particular biological system may be a
macroscopic viscoelastic model of the actin gel �6� combined
with elements from a microscopic elastic Brownian ratchet
�EBR� model of the growing edge of the network �7,8�. The
first one is a continuum model of Listeria propulsion relying

on the elastic shear stress developed by growth of the actin
meshwork at the cell surface. In the EBR model, which is
based on the behavior of individual actin filaments, thermal
bending undulations of a semiflexible actin fiber creates the
polymerization gap and the entropic force of the growing
filament pushes the bacterium forward or deforms the cell
membrane. It seems that a detailed analysis of the entropic
forces which fluctuating stiff polymers exert on rigid walls
may serve as an important input for future molecular models
of force generation in cellular systems. The length of the
thermally fluctuating parts of these polymers are typically
200–300 nm, which is very short compared to their persis-
tence length lp�15 �m �9�, such that an analysis which
considers these filaments as stiff seems appropriate. For
microtubules, whose persistence length ranges from
110 �m to 5 mm when L is varied between 2.6 and 47.5 �m
�10�, the analysis should even work better.

We consider the idealized situation illustrated in Fig. 1,
where one end of a semiflexible polymer is fixed both in
position and orientation to some rigid support, e.g., the dense
part of an actin gel. We choose coordinates such that the
grafted end is at the origin with the tangent fixed parallel to
the z axis. The membrane or obstacle is considered as a rigid,
smooth wall orthogonal to the x-z plane at a distance � from
the origin. Let � be the angle between the z axis and the
normal n̂ of the wall. If � is small enough, the wall will
constrain the Brownian fluctuations of the polymer leading
to an increase in free energy with respect to the uncon-
strained polymer. On time scales larger than the equilibration
time of the grafted polymer, this results in an average force f
exerted on the wall. In this paper we will calculate how the
entropic force f depends on the geometric parameters � and
�, the contour length L and the persistence length �p of the
polymer, and the dimensionality of the embedding space.

Polymers confined to two dimensions �2D� is a situation
frequently encountered in in vitro experiments but also of
relevance for actin filaments in the confined space of a lamel-
lopodium. We find that in this case the entropic force shows
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a pronounced maximum as a function of the compression of
the polymer, L−�, for a broad range of stiffness parameters
�=L /�p�4. The magnitude of the maximum force exceeds
the value of the Euler buckling force fc= �2

4
�pkBT

L2 by a factor
between 2 and 3. These results are quite distinct from the
behavior of a polymer which is free to fluctuate in three
dimensions �3D�. Then the entropic force is a monotonic
function of the compression and exceeds the buckling force
only in the nonlinear regime for strong compressions. These
qualitative results are summarized more quantitatively in the
conclusions �Sec. VI�.

In the branched actin network formed in lamellipodia, the
Arp 2/3 complex is responsible for the nucleation of new
filaments. It is found that the angle relative to the parent
filament is 2��70° �11�. It has been asked �7,8� whether
this angle corresponds to an optimal angle with respect to the
entropic force generated by a fluctuating filament. Indeed,
we do find that there is such an optimal angle for a homoge-
neous network pushing against a flat membrane �see Sec. V�,
but this angle is much larger, ranging in the interval 2�
� �120° ,150° �. This angle differs from previous estimates
�7,8� mainly since those were based on an incorrect value for
the persistence length of actin. It would, however, be over-
hasty to conclude that the branching angle is not optimized
for maximal force production since the simplified model in
Sec. V leaves out important physics such as the polydisper-
sity in filament length and the thermal fluctuations of the
membrane.

We proceed as follows. Section II serves to introduce and
discuss the various types of thermodynamic forces which can
be generated by fluctuating semiflexible polymers. We arrive
at the conclusion that the entropic forces discussed above are
closely related to the probability distribution of the free end
of the clamped polymer. In Sec. III, we start our analysis of
entropic forces with a polymer grafted perpendicular to the
wall. This section contains a definition of the wormlike chain
model and the basic idea of our analytical calculations,
which starting from the tip distribution calculates the re-
stricted free energy and the entropic force. The analysis is

complemented by Monte Carlo �MC� simulations, which
both show the range of validity of the analytical results and
the crossover from semiflexible to Gaussian chains. Details
of the calculations are deferred to the Appendixes A, B, and
C. Section IV treats the technically more complicated case of
a polymer inclined at an angle � with respect to the wall.
Here, we obtain the entropic forces analytically up to the
numerical evaluation of some integrals. For some asymptotic
cases, explicit analytical formula are again obtained. The MC
simulations in this chapter are restricted to a parameter range
which is close to the stiff limit and mainly serve the purpose
to define the range of applicability of the analytical results.
In Sec. V, we take the polymerization kinetics of the fila-
ments into account and show that there is an optimal angle at
which the polymerization velocity is maximum. Finally, in
the conclusion, we give a discussion of our main results.

II. ENTROPIC FORCES AND PROBABILITY
DENSITIES

According to the wormlike chain model �12,13�, the elas-
tic energy of a given configuration r�s�, parametrized in
terms of the arc length s� �0,L�, is given by

�H =
�p

2
�

0

L

ds� �t�s�
�s

�2

. �1�

Here t�s�=�r�s� /�s	 ṙ�s� is the local tangent to the contour
r�s�, �p=	 /kBT is the persistence length with 	 the poly-
mer’s bending modulus, and �=1/kBT. As the polymer is
considered to be inextensible, we have 
t�s�
=1, for all s, i.e.,
the tangent vectors are restricted to the unit sphere.

In a cellular environment, biopolymers are flexed by
Brownian motion, i.e., they exhibit thermal fluctuations in
their shape. This makes for a rich mechanic response genu-
inely different from its classical analogue, a rigid beam. Con-
sider a polymer whose position �not its orientation� is fixed
at one end and one is pulling on its other end, a typical
situation encountered in an experiment using optical or mag-
netic tweezers. Then there is no unique force-distance rela-
tion. It actually matters whether one pulls at constant force f
and measures the resulting average distance �r��f� or vice
versa. Results for the constant force ensemble are thoroughly
discussed in Ref. �2�. In a constant distance ensemble, the
probability density distribution of the end-to-end distance
P�r� provides the necessary information �14�. It defines a
free energy F�r�=−kBT ln P�r� from which the average force
may be derived by differentiation, �f��r�=−�F�r� /�r �15�.

Here, we are interested in the force a fluctuating filament
exerts on a rigid obstacle which is fixed in its position �16�.
The polymer’s end facing the obstacle is considered as free
to fluctuate and only its proximal end is fixed in position and
orientation; see Fig. 1. Since there are no direct forces be-
tween polymer and obstacle the force exerted on the wall is
solely due to the steric constraints imposed on the filament.
This suggests to use the term “entropic forces,” frequently
used in analogous physical situations �17�. However, this
should not leave the reader with the wrong impression that
there are different physical origins for entropic forces and

FIG. 1. �Color online� A membrane constrains the Brownian
fluctuations of a semiflexible polymer grafted parallel to the z axis
resulting in an entropic force on the membrane. The membrane, for
simplicity, has been considered as a rigid smooth wall.

GHOLAMI, WILHELM, AND FREY PHYSICAL REVIEW E 74, 041803 �2006�

041803-2



those discussed in the preceding paragraph. It is merely the
type of “boundary condition” imposed on the thermal fluc-
tuations which leads to their �drastically� different character.

For getting acquainted with the problem, let us consider
the simplest case, a grafted polymer whose one end and tan-
gent is fixed such that it is oriented perpendicular to a
smooth wall �Fig. 1 with �=0�. The presence of the wall
allows only for those polymer configurations which are en-
tirely in the half-space to the left of the wall. Since we are
mostly interested in stiff polymers �which have a low prob-
ability for back-turns�, this restriction may be approximated
as a constraint solely on the position of the polymer tip fac-
ing the wall, rz�L���; later in Sec. IV C we will show some
simulation data going beyond this approximation.

To derive the average force acting on the wall, we con-
sider a wall potential U��−rz�L�� for the free polymer tip,
which at the end of the calculation will be reduced to a hard
wall potential. For now, picture a steep potential which rises
rapidly for rz�L�→�. Then, the ensemble average for the
force that the polymer tip exerts perpendicular to the wall
reads

�f 
���� =
1

Z
��� � D�r�s��e−��H+U� �U

�rz�L�
. �2�

Here the partition sum

Z
��� =� D�r�s��e−��H+U� �3�

is a path integral over all polymer configurations compatible
with the boundary conditions imposed on the distal and free
end of the grafted polymer, where the measure is taken such
that the partition sum without a constraining wall �U=0� is
normalized to 1. This is now a thermodynamic force. In an
actual experiment, it is obtained by a time average with an
averaging time much larger than the equilibration time for
the grafted polymer. This force would also be measured in an
experiment where a large number of independent and identi-
cal polymers push against the same wall.

Since the wall potential depends only on the difference
between the position of the polymer tip and the wall, we may
rewrite the entropic force in �2� as

�f 
���� = kBT
�

��
ln Z
��� . �4�

Upon defining a free energy of the confined polymer as

F
��� = − kBT ln Z
��� , �5�

the entropic forces again reads as a spatial derivative of a
free energy

�f 
���� = −
�

��
F
��� . �6�

The physical interpretation of this free energy becomes clear
as one goes to the hard wall limit. Then the partition function
reduces to

Z
��� =� D�r�s��
„� − rz�L�…e−�H
¬ �
„� − rz�L�…�0,

�7�

where the subscript 0 indicates that the average is now taken
with respect to the bending Hamiltonian only. The 
 func-
tion, defined such that 
�x�=1 for x�0 and zero elsewhere,
indicates that only those configurations are counted with the
position of the polymer tip to the left of the wall. Hence, as
for the fixed distance ensemble in a pulling experiment, the
free energy results from a quantity measuring the number of
configurations obeying the imposed constraint, where each
configuration is weighted by a Boltzmann factor for the
bending energy.

It is useful to rewrite the partition function as

Z
��� = �
−L

L

dz
�� − z���„z − rz�L�…�0 = �
−L

�

dzP
�z� , �8�

where P
�z�= ��(z−rz�L�)�0 is the probability density to find
the z coordinate of the polymer’s free end at z irrespective of
its transverse coordinates. It identifies the restricted partition
sum as the cumulative distribution function corresponding to
the probability density P
�z�. One may then write the en-
tropic force in the alternative form

�f 
���� = kBT
P
���
Z
���

. �9�

Upon multiplying this formula by d�, it may be interpreted
as follows. The work done on the wall upon displacing
it by an infinitesimal distance d� equals the thermal energy
scale kBT times a conditional probability Pleft���d�
= P
���d� /Z
���, which measures the probability that the po-
sition of the polymer tip is within a distance d� from the wall
given that the polymer is in the left half-space.

Since the probability density for the position of the poly-
mer tip P�x ,z� is actually a function of the position perpen-
dicular and transverse to the wall, �9� immediately suggests
that one could define a local entropic pressure. Indeed, upon
generalizing the above arguments, one may write

p�x,�� =
− 1

Z
��� � D�r�
�U

��
�„x − r��L�…e−��H+U�

=
kBT

Z
���
�

��
�
„� − rz�L�…�„x − r��L�…�0

= kBT
P�x,��
Z
���

�10�

for the entropic pressure, i.e., the force per unit area exerted
locally at x on the wall. Again, the entropic force is given by
the thermal energy scale times a conditional probability den-
sity, which now measures the probability of finding the poly-
mer tip at a particular site x on the wall conditioned on the
polymer configuration being to the left of the wall. Pictori-
ally, one may say that the local pressure is given by kBT
times the number of “collisions” of the polymer with the

ENTROPIC FORCES GENERATED BY GRAFTED… PHYSICAL REVIEW E 74, 041803 �2006�

041803-3



wall per unit area, a reasoning which is frequently used in
scaling analyses.

The total force is obtained by integrating over this local
pressure, �f 
����=�dxp�x ,��. In addition, one may now also
define an entropic torque as has recently been done for a
rigid rod facing a planar wall �18�; we leave this issue for
future investigations.

Generalizing the above ideas suggests to introduce an ef-
fective local free energy per unit area as

F�x,�� = − kBT��

dz
P�x,z�
Z
�z�

, �11�

which is useful in applications where the obstacle is actually
not rigid but soft with some internal elasticity, e.g., a mem-
brane whose dynamics is much slower than the equilibration
time of the polymer. Then the elastic energy describing
membrane bending and the above effective free energy may
just be added to describe the combined system. Of course,
such a description fails if time scales for the dynamics of
both soft objects are comparable.

Our main conclusion in this section is that entropic forces
generated by a grafted stiff polymer can be reduced to the
calculation of the probability distribution of the polymer tip.
For a polymer constrained to two dimensions, the distribu-
tion function has been found to show quite interesting behav-
ior such as bimodality in the transverse displacement of the
free end �19�. This pronounced feature of the distribution
function has recently been rationalized upon exploiting an
interesting analogy to a random walker in shear flow �20�.

III. POLYMER ORTHOGONAL TO A WALL

In this section, we are going to calculate the entropic
force generated by a grafted polymer whose orientation is on
average perpendicular to the wall. It illustrates the basic idea
of our analytical calculations for the simplest geometry.

A. Weakly bending limit: mode analysis

In evaluating the distribution function analytically, we re-
strict ourselves to the limit of a weakly bending filament. In
other words, we consider the persistence length �p to be large
enough compared to the total contour length L, such that the
statistical weight of configurations with small sharp bends
will be negligible. The key small dimensionless quantity will
be the stiffness parameter

� = L/�p �12�

and we will refer to the weakly bending limit also as the stiff
limit.

For small �, the transverse components tx�s� and ty�s� of
the tangent vector t�s� will be small for all s. The condition

t�s� 
 =1 would suggest a parameterization of t�s� in terms of
polar coordinates or Euler angles. Such a parametrization,
however, becomes quite cumbersome in the present case
where the embedding into an external space matters due to
the steric constraints imposed by the wall. It is much more
convenient to use a Monge-like parametrization,

t =
1

�1 + ax
2 + ay

2�ax

ay

1
� , �13�

where we dropped all arguments s for brevity; the generali-
zation to d spatial dimensions is obvious.

The boundary conditions at the ends of the polymer are

t�0� = �0,0,1�T �clamped end� , �14a�

ṫ�L� = �0,0,0�T �free end� . �14b�

This translates into a�0�= �ax�0� ,ay�0��T= �0,0�T and
ȧ�L�= �ȧx�L� , ȧy�L��T= �0,0�T. We thus can choose a Fourier
representation or in other words a normal mode decomposi-
tion

ax�s� = �
k=1




ax,k sin��k
s

L
� �15�

with eigenvalues

�k =
�

2
�2k − 1� , �16�

and Fourier �normal mode� amplitudes

ax,k =
2

L
�

0

L

dsax�s�sin��k
s

L
� , �17�

and similar for ay�s�. To second order in the Fourier ampli-
tudes, the location of the endpoint along the z axis reads

rz�L� = �
0

L

dstz�s� � L −
1

2
�

0

L

ds�ax
2�s� + ay

2�s��

= L −
L

4 �
k=1




�ax,k
2 + ay,k

2 � . �18�

Similarly, we find for the Hamiltonian to second order

�H �
�p

4L
�
k=1




�k
2�ax,k

2 + ay,k
2 � . �19�

B. Moment generating function

To calculate the probability density function P
�z�, we fol-
low a procedure outlined in Ref. �14� and consider the mo-
ment generating function

P
�f� ª �e−f�L−rz�L���0

= �
−L

L

dze−f�L−z�P
�z�

= �
0

2L

d�e−f�P
�L − �� . �20�

Note that thermal averages must be evaluated using the bare
elastic free energy �1�. Since for stiff chains configurations
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with large values for the stored length �“compression”� �
=L−z are rather unlikely, we can extend the upper boundary
of the integral in the last line of the preceding equation to
infinity. This allows us to write the moment generating func-
tion as the Laplace transform of the distribution function
P
�z�,

P
�f� = �
0




d�e−f�P
�L − �� . �21�

For f =0, the latter equation reduces to the normalization
condition of the probability density function P
�z� such that
P
�0�=1.

Combining Eqs. �18�–�20�, the moment generating func-
tion can be rewritten into the following path integral form:

P
�f� =� D�a�s��exp�−
1

2
�

0

L

ds��pȧ2 + fa2�� �22�

with the boundary conditions given by �14�. This path inte-
gral is easily evaluated upon using the Fourier representation
of the transverse tangent fields Eq. �15�, and noting that to
harmonic order fluctuations in all transverse directions are
statistically independent. We find in d spatial dimensions

P
�f� = �� �
k=1



dak

N
exp�−

1

4
��k

2�p

L
+ fL�ak

2���d−1�

= �
k=1


 �1 +
fL2

�p�k
2�−�d−1�/2

, �23�

where the normalization factor N of the path integral was
chosen such that P
�0�=1. If f �R+ the product may be re-
written as �22�

P
�f� = �cosh� fL2

�p
�−�1/2��d−1�

. �24�

Note that the moment generating function, which also de-
pends on the length scales L and �p, has the scaling form

P
�f ,L,�p� = P̃
�fL
� , �25�

where we have defined the characteristic longitudinal length
scale

L
 ª
L2

�p
. �26�

The formulas in �23� and �24� are the basis for all subsequent
calculations in this section, which are basically different
forms of performing the inverse Laplace transform.

For future reference and comparison with the entropic
forces, we close this section with a discussion of the force-
extension relation in the fixed force ensemble. It simply fol-
lows as the first moment of the moment generating function

�rz�L�� f = L +
� ln P
�f�

�f
= L�1 −

L�d − 1�
4�p

tanh �fL


�fL


� ,

�27�

where f is the external force in units of the thermal energy
kBT. In the limit of small external forces, this reduces to

�rz�L�� f = L�1 −
d − 1

4

L

�p
+

d − 1

12
� L

�p
�2

fL� , �28�

which identifies L
 as 4/ �d−1� times the equilibrium stored
length due to thermal fluctuations. We also recover the effec-
tive linear spring coefficient k
 =12	2 / �d−1�kBTL4, which
was previously calculated in Ref. �23�. For strong stretching
forces the extension saturates asymptotically as

�rz�L�� f = L�1 −
L�d − 1�
4�p

�fL


� . �29�

In the limit of large compressional forces, the weakly bend-
ing rod approximation breaks down and one must use differ-
ent approaches to evaluate the force-extension relation �15�.

C. Probability density for the position of the polymer tip:
Analytical and MC results in 3D

We now return to the distribution function and the result-
ing entropic forces. Upon performing the inverse Laplace
transform one gets �for details of the calculations see Appen-
dix A 1�

P
�z� =
2

L

�
k=1




�− 1�k+1�k exp�− �k
2L − z

L

� . �30�

Inspection of Eq. �33� immediately tells us that it can be
written in scaling form

P
�z,L,�p� = L

−1P̃
��̃� , �31�

where we have made the dependence of the probability den-
sity on L and �p explicit and introduced the scaling variable

�̃ =
L − z

L


�32�

measuring the compression of the filament in units of L
.
This implies that data for the probability density of the poly-

mer tip can be rescaled to fall on a scaling function P̃
��̃�,
shown as the solid curve in Fig. 2. Of course, since the
analytical calculations are based on the mode analysis in the
weakly bending limit, such a universal scaling curve is ob-
tained only for small enough stiffness parameters �.

The probability density is strongly peaked towards full
stretching, �̃→0, and falls off exponentially for large �̃, such
that for �̃�0.3,

P̃

���̃� = � exp�− 1

4�2�̃� �33�

is already an excellent approximation. The series expansion
given by �30� converges well for all values of z well below L,
but its convergence properties become increasingly worse if
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z approaches L. As detailed in Appendix A 2, one may also
derive an alternative series representation of the tip distribu-
tion function which converges well close to full stretching

P̃
��̃� = �
l=0




�− 1�l2l + 1
���̃3

exp�−
�l + 1

2�2

�̃
� . �34�

Already the first term of �34�,

P̃

���̃� =

1
���̃3

exp�−
1

4�̃
� �35�

gives an excellent fit for �̃�0.3. In particular, it captures the
main feature of the distribution function, namely its maxi-
mum is close to full stretching. The same approximate ex-
pression may also be obtained by evaluating the inverse
Laplace transform using the method of steepest descent; see
Appendix B. The asymptotic results given in �35� and �33�
taken together give a representation of the scaling curve to a
very high numerical accuracy. They are the analogues of the
results found in Ref. �14� for a freely fluctuating filament;
see also Ref. �15�.

The MC data shown in Fig. 2 have been obtained by using
a standard algorithm for a discretized wormlike chain, simi-
lar to the one described in Ref. �14�. As expected, the MC
results agree very well with the analytical calculations for
small values of �. From Fig. 2 we can read off that the
asymptotic stiff scaling regime remains valid up to stiffness
parameters ��0.1; even for �=0.5 the shape of the scaling
function resembles the MC data quite closely. As the poly-
mer becomes more flexible, the shape asymptotically be-
comes Gaussian; for �=3 a skew is still noticeable. Note that
in the parameter range given in Fig. 2, the width of the res-
caled probability densities stays approximately the same and
is hence well characterized by the longitudinal scale L
.

D. Confinement free energy and entropic forces: 3D

Now we are in a position to calculate the restricted parti-
tion sum �cumulative probability distribution� Z
���
=�−L

� dzP
�z� by �formally� integrating the series expansion of
�30� term by term. This gives

Z
��� = 1 − �
�

L

dzP
�z� = 1 − 2�
k=1




�− 1�k+1�k
−1�1 − e−�k

2�L−��/L
�

= 2�
k=1




�− 1�k+1�k
−1e−�k

2�L−��/L
 , �36�

where in the first line we used the normalization of P
�z� and
in the last line the identity �21�

�
k=1




�− 1�k+1 1

2k − 1
=

�

4
. �37�

The series expansion in �36� converges well for all values of
� well below L. Alternatively, one may start from �34� and
derive

Z
��� = 1 + 2�
k=1




�− 1�k erfc� �k/�
��L − ��/L


� , �38�

which is well behaved for � close to L, and dominated by its
first term. A second method to obtain �38� can be found in
Appendix C.

From both series expansions, it is evident that the re-
stricted partition sum has the scaling property

Z
��,L,�p� = Z̃
��̃� , �39�

where we have introduced the scaling variable

�̃ =
L − �

L


, �40�

which measures the minimal stored length �compression� �
=L−� of the filament in units of L
. The confinement free

energy, F̃
��̃�=−kBT ln Z̃
��̃�, corresponding to this partition
function is shown in Fig. 3. Again, the universal scaling
function describes the MC data well for ��0.1. Note that for
all values of �̃ and the stiffness parameter �, the free energy
is convex. This will turn out to be an important feature which
distinguishes the 3D and 2D case.

Upon using �9� for the entropic force we find

f 
��� =
kBT

L


P̃
��̃�

Z̃
��̃�
�41�

which immediately shows its scaling behavior and identifies
kBT /L
 as the characteristic force scale. It is up to a prefactor
identical to the critical force

fc =
�2	

4L2 =
�2

4

kBT

L


�42�

for the buckling instability of a classical Euler-Bernoulli
beam �24�. It suggests to rewrite the entropic force as

FIG. 2. �Color online� Scaling function P̃
��̃� �solid line� in 3D
for the probability density to find the free end of a grafted semiflex-
ible polymer in a plane defined by rz�L�=z or equivalently with a
reduced stored length �̃. For comparison, MC data are given for a
series of stiffness parameters �=L /�p indicated in the graph. De-
viations from the scaling curve in the stiff limit become significant
for ��0.5.
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f 
��,L,�p� = fc f̃ 
��̃� , �43�

with the scaling function

f̃ 
��̃� ª
4

�2

P̃
��̃�

Z̃
��̃�
. �44�

The analytical result for the scaling function f̃ 
��̃�, shown
as the solid curve in Fig. 4, has several characteristic fea-
tures. First of all, it is always monotonically increasing since
the free energy is convex. For �̃�0.4, the scaling function is

f̃ 
 �1 corresponding to f 
 � fc, i.e., a vanishing contribution
of thermal fluctuations to the force. For smaller �̃, corre-
sponding to larger distances � between the wall and the
grafted end of the polymer, fluctuations reduce the force ex-
erted on the wall by effectively shortening the polymer. For

�→L �respectively, �̃=0�, the probability of the polymer to
contact the wall becomes smaller and smaller until finally for
�=L only one configuration, namely the completely straight
one, has rz�L�=L. Hence the force must vanish for all ��L
�respectively, �̃�0�.

We have learned already in Sec. III C that there are excel-
lent approximations to the scaling function for the probabil-
ity density of the free polymer end for small values of the
reduced stored length �35�. In the same way, the first term of
�38� is an excellent approximation to the infinite series for
�̃�0.2. Thus, we may write for the scaling function of the
entropic force

f̃ 

���̃� =

4e−1/4�̃

�5/2�̃3/2�1 − 2 erfc�1/2��̃��
, �45�

which already describes most of the nontrivial shape of the
scaling function. For �̃�0.2, it suffices to high accuracy to
use the first two terms of �36�, which gives

f̃ 

���̃� =

1 − 3e−2�2�̃

1 − 1
3e−2�2�̃

. �46�

Upon inspection of �41�, one may interpret the functional
form of the entropic force as due to two effects. In the nu-
merator, we have the probability density for the position of
the free end at the wall. This function shows a pronounced
peak as one decreases the distance � �respectively, increases
the scaling variable �̃�. At the same time, the denominator,
the cumulative distribution function, decreases by decreasing
�. It is now a matter of how fast these changes occur and
what the ensuing shape of the scaling function for the en-
tropic force will be. In the present case of a polymer in 3D,
the decrease in the cumulative distribution function seems to
be fast enough to compensate the maximum in the probabil-
ity density of the free polymer end such that the entropic
force becomes a monotonically increasing function of �̃.

From Fig. 4, one observes that the universal scaling curve
is a lower bound to the MC data for all values of the stiffness
parameter �. For fixed �, the entropic force always increases
monotonically with increasing compression; for intermediate
values ��2.5 there is a pronounced change in curvature at
�̃�0.25. For strong compression the results asymptote to the
mechanical limit �kBT=0�. This limit is not correctly repro-
duced within the harmonic approximation which gives

fmech��� = fc
�L − �� , �47�

whereas the exact force-extension curve is a monotonous
function in � that is somewhat larger than fc for ��L and
tends to fc for �→L.

One might finally ask, whether these entropic forces f 
���
are related to the force extension relation discussed in Sec.
III B, �rz�L�� f − �rz�L��0=k


−1f +O�f2� with k
 =6	2 /kBTL4

�23�. Rewriting these linear response result in scaling form
we find

FIG. 3. �Color online� Confinement free energy F̃
��̃� of a
grafted polymer constrained by a rigid wall in 3D as a function of
the reduced minimal stored length �̃= �L−�� /L
. The solid line
gives the scaling function obtained in the limit of a weakly bending
rod. Symbols represent MC data for different values of the stiffness
parameter � as indicated in the graph.

FIG. 4. �Color online� Scaling function f̃ 
��̃� for the entropic
force exerted on a wall at a distance � from the grafted end as a
function of the scaling variable �̃= �L−�� /L
. Symbols represent
MC data for different stiffness parameters �, as indicated in the
graph. Entropic force is a monotonically increasing function of �̃.
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f

fc
=

24

�2��̃ −
1

2
� . �48�

Comparing this with Fig. 4, we see that the linear response
result does not contain any information about the situation
under investigation here. To the contrary, the initial rise of
the force when � becomes slightly smaller than L is highly
nonlinear �see Eq. �45��.

E. Distribution function and entropic forces: 2D

Since in some important physiological situations like the
leading edge of a crawling cell, polymer is essentially con-
fined to fluctuate in 2D, it is important to look at the 2D
problem more precisely. Analogous to the preceding section,
the tip distribution function of a polymer confined to 2D,
e.g., by two parallel glass plates, obeys a scaling law in the
stiff limit

P
�z,L,�p� = L

−1P̃
��̃� . �49�

The scaling function may again be represented in terms of
series expansions �see Appendix A 2�. A series which con-
verges well for small values of �̃ reads

P̃
��̃� = �
l=0


 �− 1
2

l
� 2l + 1

2

�2��̃3/2
exp�−

�l + 1
4�2

�̃
�; �50�

for an explicit formula for the binomial coefficient in �50�
see �A17�. The scaling function, shown as the solid curve in
Fig. 5, has an overall shape which is quite similar to 3D with
a pronounced maximum close to full stretching. The series
approximations may again give useful approximate expres-
sions for the shape. In the proximity of full stretching, the
series given by �50� converges very fast such that already the
first term

P̃

���̃� =

1
�8��̃3/2

exp�−
1

16�̃
� �51�

is an excellent approximation for the whole series at least for
�̃�0.3. As in 3D, a saddle point approximation also gives
�51� �see Appendix B�. Alternatively, as shown in Appendix
A 2, one may derive a series expansion which converges well
in the strong compression limit; see �A11�. For �̃�0.3, it
suffices to use the first term of this sum only which reads

P̃

���̃� =

�e−�2�̃/4

2�2
�1 + 1.5e−5�2�̃/16 + 2e−12�2�̃/16

+ 2.5e−21�2�̃/16 + 3e−32�2�̃/16� . �52�

Upon increasing the stiffness parameter, the rescaled
probability distribution deviates from the scaling function in
the semiflexible limit and approaches a Gaussian distribu-
tion. In contrast to 3D, there is an intermediate parameter

regime in the stiffness parameter where P̃
��̃� exhibits a
marked shoulder. This feature of the distribution function has
recently been identified and explained in terms of an inter-
esting analogy with the physics of a random walker in shear
flow �20�.

Upon integrating �50� from −L to �, one obtains for the
restricted partition sum

Z
��� = 1 − �2�
k=0



�− 1�k�2k − 1�!!

2kk!
erfc� �2k+1

2���̃
� , �53�

with the same scaling variable �̃ as in the preceding section.
Similarly, using �A11� gives

Z
��� �
1

1.49�
k=0




�− 1�k�
i=4

8

�2k+i/4
−1 e−�2k+i/4

2 �̃. �54�

Hence, as in 3D, one finds for the free energy

F
��,L,�p� = − kBT ln Z̃
��̃� �55�

and the entropic force

f 
��,L,�p� = fc f̃ 
��̃� �56�

with the scaling function

f̃ 
��̃� = −
4

�2

Z̃
���̃�

Z̃
��̃�
, �57�

where fc=�2	 /4L2; see the solid curves in Fig. 6 and Fig. 7
for a plot of the scaling functions for the free energy and
entropic force, respectively. The key difference between the
results in 2D and 3D is that the effective free energy exhibits
a change in curvature at �̃�0.05 and as a result a pro-
nounced peak in the entropic force. The peak is a pretty
robust feature of the distribution function and vanishes only
for very large values of ��5.

In order to understand the physical origin of this peak it
suffices to consider small values of �̃. Then, using only the
leading term of the series expansion �53�, one obtains for the
entropic force

FIG. 5. �Color online� Probability density P̃
��̃� of the free end
of a grafted semiflexible polymer in 2D as a function of �̃ �solid
curve�. Symbols represent MC data for different stiffness param-
eters, as indicated in the graph. MC data deviate from universal
curve as � increases.
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f̃ 

���̃� =

�2e−1/16�̃

�5/2�̃3/2�1 − �2 erfc�1/4��̃��
. �58�

This has the same functional form as the corresponding ex-
pression in 3D, �45�, but differs in some numerical factors.
These differences can all be traced back to the strength � of
the essential singularity of the tip distribution function close

to full stretching, P̃
��̃��exp�−� / �̃�; compare �35� with �51�.
One may interpret this strength as a kind of phase space
factor counting how fast the number of polymer configura-
tions decreases as one approaches full stretching. It clearly
shows that the maximum of the entropic force in 2D is of
purely geometric origin. As an interesting consequence of
this maximum, one should note that for most values of the
reduced stored length �̃ the entropic force exceeds the purely
mechanical force given by the Euler buckling force.

IV. GRAFTED POLYMER AT AN OBLIQUE ANGLE
TO THE WALL

The generic situation one encounters in a cellular system
is that the polymer is inclined with respect to a membrane.
Then we must ask how the force derived above changes
when the graft of the polymer is not orthogonal to the con-
straining wall but at some oblique angle � /2−�; see Fig. 8.
Since the presence of the wall restricts the position of the
polymer tip to

rz�L�cos � + rx�L�sin � � � �59�

one must evaluate the restricted partition sum,

Z��,�� = �
„� − rz�L�cos � − rx�L�sin �…�0

=� dxdzP�x,z�
�� − z cos � − x sin �� �60�

to find the entropic force.

A. Probability distribution function of the tip

This calculation requires the knowledge of the joint prob-
ability density of the tip

P�x,z� ª ��„rx�L� − x…�„rz�L� − z…�0. �61�

In Sec. III, we have already analyzed the reduced distribution
function P
�z� and found that its width is characterized by the
scale L
 =L2 /�p. Similarly, one can find an explicit expres-
sion for P��x� in harmonic approximation, where

rx�L� � �
k=1




ax,k�
0

L

ds sin��ks/L� = L�
k=1




�k
−1ax,k, �62�

and thus

FIG. 6. �Color online� Free energy of a grafted polymer whose
tip is constrained by a rigid wall in 2D. The solid line gives the
universal scaling function in the stiff limit. MC data are given by
the symbols for different values of the stiffness parameter � as
indicated in the graph.

FIG. 7. �Color online� Scaling function for the entropic force
which a grafted polymer exerts on a rigid wall in 2D as a function
of the reduced stored length �̃= �L−�� /L
. The solid line gives the
universal scaling function in the stiff limit. MC data are given by
the symbols for different values of the stiffness parameter � as
indicated in the graph. There is a pronounced peak in the entropic
force for ��5.

FIG. 8. �Color online� A smooth hard wall at some oblique angle
� /2−�, constrains the configurations of a stiff polymer grafted
parallel to the z axis.
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P��x� =� dq

2�
eiqx�exp�− iqL�

k=1




�k
−1ax,k��

=� dq

2�
eiqx exp�−

L3

�p
q2�

k=1




�k
−4� . �63�

With �k=1

 1

�2k−1�4 = �4

96 �21�, this gives a Gaussian distribution

P��x� =
1

�2�L�

e−�1/2��x/L��2
, �64�

where we have defined the characteristic transverse length
scale

L� = �L3/3�p. �65�

Together with L
, these are the two length scales are charac-
terizing the width of the joint distribution function. This sug-
gests to write the joint distribution function as

P�x,z,L,�p� =
1

L
L�

P̃�x̃, �̃� , �66�

in terms of dimensionless variables

x̃ = x/L�, �67�

�̃ = �L − z�/L
 . �68�

An explicit form of the joint distribution function can be
calculated to harmonic order. For simplicity, we start with a
polymer fluctuating only in the x-z plane �d=2�. Then

P2�x,z� =� dqz

2�

dqx

2�
e−iqzz−iqxx�ei�qzrz�L�+qxrx�L���0

=� dqz

2�

dqx

2�
eiqz�L−z�−iqxx�

k
�exp�− i�Lqz

4
ax,k

2 −
Lqx

�k
ax,k���

=� dqz

2�

dqx

2�
eiqz�L−z�−iqxx�

k

� �k
2

�k
2 + iqzL


exp�−
3qx

2L�
2

�k
2��k

2 + iqzL
�
�

=
1

L�L

� dq̃z

2�

dq̃x

2�
eiq̃z�̃−iq̃xx̃��

k
� 1

1 + iq̃z�k
−2�exp�− 3q̃x

2�
k

1

�k
2��k

2 + iq̃z�
�

=
1

L�L

� dq̃z

2�

dq̃x

2�
a2�iq̃z�eiq̃z�̃−iq̃xx̃ exp�−

3

2
q̃x

2b�iq̃z�� , �69�

where for z�R+ we have �21�

a2�z� ª �
k
� 1

1 + z�k
−2 =� 1

cosh �z
, �70�

b�z� ª 2�
k

1

�k
2��k

2 + z�
=

�z − tanh �z

z3/2 . �71�

For d=3, the additional degrees of freedom associated with
excursions in the y direction lead to the replacement of
qzax

2�k� by qz�ax
2�k�+ay

2�k�� which results in an additional fac-

tor of �1+ iqz�k
−2 for each mode k. Thus, for general d, we

have to replace a2�z� with

ad�z� ª �
k
� 1

1 + z�k
−2��d−1�/2

. �72�

As Re�b�iq̃z���0 for all q̃z� �−
 ,
�, the Gaussian inte-
gration over q̃x in Eq. �69� can be performed by completing
the square, such that

P̃d�x̃, �̃� =� dq̃z

2�
eiq̃z�̃

ad�iq̃z�
�6�b�iq̃z�

exp�−
x̃2

6b�iq̃z�
� . �73�

Along similar lines, one may also calculate the full joint
distribution function for a grafted polymer in d=3,

P3�x,y,z� =
1

L�
2 L


� dq̃z

2�
eiq̃z�̃

a3�iq̃z�
6�b�iq̃z�

exp�−
x̃2 + ỹ2

6b�iq̃z�
�

¬

1

L�
2 L


P̃3�x̃, ỹ, �̃� . �74�

In addition to the poles of a3�iq̃z� at q̃z= i�k
2 on the positive

imaginary axis of the q̃z plane, the integrand also has singu-
larities at the zeros i�k

2 of b�z�. Thus we continue by evalu-
ating the integrals numerically.

1. Numerical evaluation of integrals

The integrand of �73� has no singularities on the real q̃z
axis. Before attempting a numerical integration, we discuss
the behavior of the different terms appearing in �73�. For d
=3, we have
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a3�z� = �
k

1

1 + z�k
−2 =

1

cosh �z
. �75�

For q̃z�R, the real and the imaginary part 1 /cosh�iq̃z are,
respectively, even and odd functions rapidly decaying in
magnitude for q̃z→ ±
. The real part of 1 /b�iq̃z� is strictly
positive and increasing with increasing 
q̃z
. The imaginary
part of 1 /b�iq̃z� behaves asymptotically as Im�b−1�iq̃z��� q̃z

leading to a second strongly oscillating contribution to the
integrand of �73� besides exp�iqz�. In the interest of numeri-
cal stability of the integration, it is advantageous to rewrite
the integrand appearing in �73� to

1

2�
eiq��̃−x̃2/6� a3�iq�

�2�3b�iq�
exp�−

x̃2

6
�1/b�iq� − iq�� �76�

for q larger than some fixed q0.

2. Region of vanishing probability

Equation �76� suggests that �̃= x̃2 /6 is a special situation.
The probability density P�x ,z� must vanish for points which
are at distances greater than L from the graft, x2+z2�L2.
What does this translate to in the harmonic approximation?
The largest value x* of rx�L� that can be obtained for a given
value z* of rz�L� can be found from the variation of rx�L�
−��z*−rz�L�� where � is a Lagrange multiplier. Using �18�
and �62�, this leads to ax,k=a /�k where a is some number.
We thus find

x* = La�
k=1




�k
−2 = L

a

2
�77�

and

z* = L −
L

4
a2�

k=1




�k
−2 = L − L

a2

8
�78�

resulting in

L − z*

L
=

1

2
� x*

L
�2

. �79�

As L�
2 /LL
 =1/3, this is equivalent to

�̃* = 1
6 �x̃*�2. �80�

Hence P̃�x̃ , �̃� must vanish for �̃� x̃2 /6.

3. Results for the general distribution function

It is now straightforward to evaluate the integrals in Eq.
�73� by some standard numerical method. The corresponding

results are shown in Fig. 9 as contour plots of P̃�x̃ , �̃� in d
=3 and d=2, respectively. These analytical results compare
very well with MC results for polymers with a stiffness pa-
rameter ��0.2; see a plot with �=0.1 in Fig. 10. There are
deviations between the harmonic approximation and MC
data for larger values of � �19,20,25�.

The density distribution essentially vanishes outside the
parabola given by �̃= x̃2 /6, corresponding to the classical

contour of the polymer in harmonic order. The main weight

of P̃�x̃ , �̃� is concentrated close to this line, where the effect
is stronger for d=2. Profiles parallel to the �̃ direction are of

a shape qualitatively similar to P̃
��̃� �see Fig. 2� at least for
small x̃. Profiles parallel to the x̃ axis are not Gaussian. For
small �̃�0.1, they are peaked at x̃=0 but unlike a Gaussian,

FIG. 9. �Color online� Density plot of the probability density

P̃�x̃ , �̃� in �a� d=3 and �b� d=2 calculated numerically from Eq.
�73�. As it is expected, the probability distribution of the tip is much
narrower in 2D compare to 3D.

FIG. 10. �Color online� Density plot of the probability density

P̃�x̃ , �̃� in �a� d=3 and �b� d=2 obtained from MC simulations for
�=0.1. The MC data agree very well with corresponding numerical
results in Fig. 9.
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they vanish for x̃2�6�̃. For larger �̃, they display a double-
peaked shape. Both features would be completely missed by

a factorization approximation P̃�x̃ , �̃�= P̃��x̃�P̃
��̃�. An
elaborate discussion of the features of the distribution func-
tion in d=2 and d=3, as one increases the stiffness param-
eters or introduces some backbone elasticity, will be the topic
of a forthcoming presentation �25�.

The shape of the full joint probability distribution
P3�x ,y ,z� is best illustrated by plotting an isosurface, e.g.,

P̃3�x̃ , ỹ , �̃�=0.1. Due to rotational symmetry, a density plot
for P3�x ,y ,z� may be obtained by rotating the contour plot of
P3�x ,z� �Fig. 9�a�� around the z axis. Again MC and analyti-
cal results are identical for small �.

B. Entropic forces: scaling functions

We are now in a position to evaluate the general expres-
sion �60�, for the restricted partition sum. Before going into
the details of the calculations, it is instructive to have a look
at the geometry of the problem in terms of the dimensionless
variables x̃ and �̃. Recall that x̃ and �̃ are measuring the
transverse displacement of the tip x and the stored length L
−z in units of the characteristic transverse and longitudinal
length scales, L� and L
, respectively. As can be inferred
from Fig. 8, the wall crosses the x̃ and �̃ axis at

�� =
L cos � − �

L� sin �
and �
 =

L cos � − �

L
 cos �
, �81�

respectively; see Fig. 11. These are the two basic dimension-
less variables characterizing the entropic forces exerted on
the inclined wall. We also introduce the slope �=tan � of the
constraining wall with respect to the x̃ axis

� =
�


��

=
L�

L


tan � =
1

�3�
tan � . �82�

As discussed above, the finite length of the polymer gives a
constraint on the reduced stored length �̃ such that it must be
larger than x̃2 /6, i.e., above the parabola drawn in Fig. 11.
Hence, just the points on the constraining wall inside the
parabola are accessible to the tip of the polymer. As one
moves the wall further away from the grafted end, the num-
ber of contact points decreases and finally reduces to zero
when the wall becomes tangent to the parabola. In this limit,
where

�

c = − 3

2�2 �83�

the force exerted on the wall vanishes.
We may now write the restricted partition sum in terms of

the reduced stored length �
 and the slope of the wall �,

Z��,�� = Z̃��
,�� , �84�

where

Z̃��
,�� =
1

2
erfc

�


�2�
− �

0


 dq

�q

�Im�eiq�
�a3�iq�e−�3/2���q�2b�iq� − e−�1/2���q�2
�� ,

�85�

as shown in Appendix D. The force is again found by taking
the derivative of kBT ln Z with respect to �. It obeys the
scaling law

f��,�,L,�p� = fc��� f̃��
,�� , �86�

with an amplitude

fc��� =
�2	

4L2cos �
=

fc

cos �
�87�

and a scaling function

f̃��
,�� = −
4

�2

Z̃���
,��

Z̃��
,��
�88�

that can be expressed in terms of the restricted partition sum
and its derivative

Z̃���
,�� = − �
0


 dq

�
Re�eiq�
a3�iq�e−�3/2���q�2b�iq�� .

�89�

As detailed in Appendix D, Eq. �85� and Eq. �89� are suited
best for a numerical evaluation of the entropic force.

In Fig. 12, the analytical results for the scaling function

f̃��
 ,�� of the entropic force are shown as a function of
��
 =�
 −�


c, for a series of values of �. Since we have sub-
tracted off the critical value of the reduced stored length �


c,
the forces vanish for ��
 �0. There is a dramatic difference
in the shape of the force-distance curves in 2D and 3D.
Whereas the force increases monotonically with increasing
��
 for 3D, it shows a pronounced maximum in 2D, the

FIG. 11. Geometry of the problem in terms of the reduced co-
ordinates x̃ and �̃. The position of the wall is characterized by its
slope �=�
 /�� and �
, the distance from the origin along the z̃
axis, i.e., the minimal reduced stored length imposed by the pres-
ence of the constraining wall. To harmonic order the finite length of
the filament also constrains the reduced stored length �̃ to be larger
than x̃2 /6.
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physical origin of which is the same as for �=0. The maxi-
mum in 2D vanishes upon increasing �, which can either be
understood as an increase in the inclination angle or an in-
crease in the persistence length; see Eq. �82�.

For comparison, MC data are given for a particular value
of the stiffness parameter, �=0.1. In this stiff regime the
analytical results compare very well with the MC data, ex-
cept for large values in the stored length where the harmonic
approximation is expected to become invalid.

For small values of �, the reduced stored length �
 is no
longer a good variable. Instead, we define a new scaling

function f̄��� ,�� such that

f��,�� =
kBT

L� sin �
f̄���,�� , �90�

where

f̄���,�� = �
�2

4
f̃��
/�,�� . �91�

Like in the previous scaling plot, the force should vanish for
��
 �0, which in terms of �� reads ���− 3

2�. Again, there
is a marked difference between 2D and 3D results; see Fig.

13. We also observe that the scaling function f̄��� ,�� as-
ymptotically approaches a limiting curve for �→
, which
for a fixed value of �, corresponds to �→� /2. It turns out,
as we will show now, that this limiting behavior can well be
explained within a factorization approximation P�x ,z�
� P
�z�P��x�. Then, Z�� ,�� simplifies to

Z��,�� =� dzP
�z�Z��� sin−1 � − z cot �� , �92�

where

Z��x� = �
−


x

dx�P��x�� �93�

is the restricted partition sum for the transverse fluctuations.
The longitudinal distribution function P
�z� is, for small
L /�p, strongly peaked at z�L with a characteristic width of
L
, and Z� varies on the scale L�. Then, for ��1, the width
of the longitudinal distribution function is much smaller than

FIG. 12. �Color online� Scaling function of the entropic force f̃
in �a� d=3 and �b� d=2 as a function of ��
 =�
 +

3
2�2 for a series of

values of � as indicated in the graphs. Solid lines represent analyti-
cal results as obtained from a numerical evaluation of Eq. �88�.
Monte Carlo data for a stiffness parameter �=0.1 are given as sym-
bols, as indicated in the graphs. For �=0, one recovers the results

for f̃ 
��
� as discussed in Sec. III.

FIG. 13. �Color online� Scaling function f̄��� ,�� in �a� d=3
and �b� d=2 for a series of values for � �solid lines�. For large �,

the scaling function f̄��� ,�� asymptotically converges to f̄�����
obtained within a factorization approximation. The MC data indi-
cated by different symbols in the graphs are given for a fixed stiff-
ness parameter �=0.1.
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the transverse restricted partition sum, such that the integra-
tion over P
 can be approximated by Z�� ,���Z����
−L cos ��sin−1 �� which upon using that the transverse dis-
tribution function is a simple Gaussian, Eq. �64�, results in

Z��,�� �
1

2
erfc

��

�2
¬ Z̄����� . �94�

This approximation fails when ��1, which defines an angle

�c = arctan�L
/L�� � �3L/�p �95�

well above which the factorization approximation is valid.
The entropic force is then

f��,�� =
kBT

L� sin �
f̄����� , �96�

where

f̄����� = −
Z̄�� ����

Z̄�����
=� 2

�

e−��
2 /2

erfc���/�2�
. �97�

This result for the scaling function of the entropic force is
indicated as the thick solid line in Fig. 13. It becomes exact
in the limit �=� /2, where starting from Eq. �60� one can
integrate out the longitudinal coordinate to end up with

Z��,
�

2
� =

1

2
erfc� − �

�2L�

� . �98�

Finally, for large �, one recovers the linear response result
f�� ,� /2�=3	� /L3.

If we compare the results of the factorization approxima-
tion for ���c, �96� and �97�, to Eq. �2� and Eq. �5� of Ref.
�7�, one realizes that they are almost identical up to the mi-
nor difference that Mogilner and Oster define their 	0 to be
4	 /L3 where it actually should be 3	 /L3. The factor 4 in
Ref. �7� instead of the correct value 3 is the result of assum-
ing that the minimal energy configuration of a thin rod bent
by application of a force to its nongrafted end has constant
radius of curvature for small deflections, which is not the
case. In fact, the boundary condition of the mechanical prob-
lem forces the curvature to vanish at the nongrafted end. In
Ref. �7�, the entropic force was calculated by taking into
account the transverse fluctuations of the grafted polymer
only and completely disregarding any stored length fluctua-
tions. Here, the factorization approximation, which treats
longitudinal and transverse fluctuations as independent, gives
the same result for inclination angles ���c. The reason
behind the validity of the asymptotic results, �96� and �97�, is
that the tip distribution function is much narrower in the
longitudinal than the transverse direction for ���c

��L /�p. Hence the range of validity of the factorization
approximation becomes larger as the polymers become
stiffer. Of course, the analysis in Ref. �7� has to fail for small
inclination angles since it does not account for stored length
fluctuations at all. This is seen most dramatically for �=0,
where such an approximation would give no force at all in
contrast to what we find in Sec. III.

C. Entropic forces: explicit results

The analysis in the preceding section gives the full scaling
picture for the entropic forces as a function of the scaling
variables �
 and ��. Here we discuss our findings in terms of
the actual distance of the grafted end to the wall �, the incli-
nation angle �, and the stiffness parameter �=L /�p, which
may be more convenient for actual applications. Of course,
the disadvantage of such a representation is that we now
must give the results for particular values of the stiffness
parameter. In this section, we first discuss the results in 3D
and then compare it to the 2D case.

In Figs. 14 and 15, the force f in units of the Euler buck-
ling force fc is shown as a function of � �in units of the total
filament length L� for a series of values of � and vice versa
�d=3�; the stiffness parameter has been taken as �=0.1. Re-
call that the angle �=0 corresponds to a wall perpendicular
to the orientation of the grafted end of the polymer, which
has been discussed in detail in Sec. III. Upon increasing the
inclination angle �, the entropic force decreases for all given
values of �. This is to be expected since the wall then cuts off

FIG. 14. �Color online� Analytical and MC simulation results
for the entropic force f / fc as a function of the distance of the
grafted end from the wall � /L for a series of inclination angles �
=17° , . . . ,89° with steps 9° �d=3�.

FIG. 15. �Color online� Analytical and MC simulation results
for the entropic force f / fc as a function of the inclination angle �
�in degrees� for a series of distances to the wall � /L
=0.99,0.985, . . . ,0.95.
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less from the probability cloud of the polymer tip. For the
same reason the forces also decrease with increasing � for a
given value of �. The analytical results �solid lines� agree
well with the MC data for not too small values of �. The
deviations grow larger upon decreasing the distance between
the wall and the grafted end. Then nonlinear effects are not
taken into account by our weakly bending approximation set.

In the limit as the inclination angle approaches � /2, it is
certainly no longer justified to calculate the entropic force by
assuming that only the polymer tip is not allowed to pen-
etrate the membrane. Then, one must take into account the
fact that also the body of the polymer is constrained by the
presence of the wall. Since this reduces the number of al-
lowed polymer configurations even further, this effect is ex-
pected to lead to an enhancement of the entropic force. In-
deed this is the case, as one may infer from Fig. 16, where
we show a comparison with MC simulation accounting for
these constraints. One also notes that the enhancement of the
entropic forces becomes largest as �→� /2 and the distance
between the wall and the grafted end becomes small; a full
account of this effect will appear in Ref. �26�.

For comparison, Fig. 17 shows the entropic force f in 2D
as a function of � for different values of �. Inspection of this
figure immediately tells us that in contrast to 3D decreasing
� �for a given value of �� is not always increasing the en-
tropic force.

Finally, we would like to compare our full results in 3D
with the factorization approximation discussed in the preced-
ing section, Eq. �97�, which when corrected for some minor
factor is identical to the results given in Ref. �7�. The com-
parison is given in Fig. 18 for a stiffness parameter �=0.1. In
the limit of large inclination angles well above �c�30�,
there is excellent agreement between the factorization ap-
proximation and the full results for not too small values of �.
As one approaches �c, the range of validity of the factoriza-
tion approximation shrinks and finally it becomes invalid for
���c.

To illustrate the applicability of the factorization approxi-
mation, let us take some examples. For the cytoskeletal fila-
ment F-actin with a contour length 100 nm and persistence
length �p=15 �m, the stiffness parameter becomes �
=0.006 which gives �c�7.6°. Upon increasing the stiffness
parameter to �=0.1, which amounts to changing the contour
length to a value of L=1.6 �m, the critical angle �c in-
creases to 28.7°.

V. PROTRUSION VELOCITY AND INTERCALATION
PROBABILITY

In this final section, we would like to apply our results to
calculate the protrusion velocity for an idealized model sys-
tem. This serves to illustrate how the theoretical results ob-
tained in this paper may be applied to arrive at a microscopic

FIG. 16. �Color online� Comparison of the analytical results for
the entropic force as a function of � /L �solid lines� for a series of
values for �=17° , . . . ,89° with steps 9° indicated in the graph with
MC simulations �symbols in the graph�, which take into account the
constraints of the wall on the body of the polymer; �=0.1. The
deviations are most pronounced for small values of � and inclina-
tion angles � close to � /2 �d=3�.

FIG. 17. �Color online� Analytical results for the entropic force
f / fc as a function of the inclination angle � �in degrees� for differ-
ent values of distances to the wall �d=2�; stiffness parameter has
been taken as �=0.1. MC data points have been removed for more
clarity.

FIG. 18. Comparison of the full result for the entropic force as a
function of � /L �full lines� with the results obtained from the fac-
torization approximation �dashed lines� for a stiffness parameter �
=0.1 and a series of inclination angles �=30° ,40° , . . . ,80°. The
range of validity of the factorization approximation broadens as one
increases the inclination angle �; it is invalid for � smaller than
�c�30°.
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model for cell motility. As illustrated in Fig. 19, we consider
a semiflexible polymer mesh, where each filament is inclined
at a fixed angle � with respect to a membrane, which—for
simplicity—is idealized as a rigid smooth wall. We ask for
the average protrusion velocity of the polymerizing mesh
pushing against a membrane which is under a constant ex-
ternal load f .

For a monomer to be appended to the tip of fluctuating
semiflexible polymer near the rigid wall, the distance be-
tween tip and the wall must be at least � cos � where � is the
increase in polymer length due to the addition of a single
monomer. For actin, � would be half a monomer radius or
��2.7 nm. The intercalation probability is given by

p��,�,�� =
Z�� − � cos �,��

Z��,��
. �99�

Biologically relevant parameters are L�30 nm and lp
�15 �m which corresponds to �c=4.5° and a critical force
of fc�150 pN. For a given external force f , we may now
find � and � such that f�� ,��= f . Then, following Ref. �7�,
the intercalation probability can �under certain assumptions�
be converted into a protrusion velocity of the tip

v�f ,�� = � cos �„konMp���f ,��,�,�� − koff… , �100�

where M is the monomer concentration and kon and koff are
the monomers attachment and detachment rates, respectively.
Figure 20 displays the velocity as a function of the inclina-
tion angle � and a set of forces ranging from
0.1 pN to 2.9 pN. The main feature of this figure is that the
filament growth velocity is not a monotonic function of the
angle �, but passes through a maximum at an optimal fila-
ment orientation �opt. The physical reason for such an opti-
mal angle is obvious. On the one hand, thermal fluctuations
may not be able to bend a stiff polymer like actin which is
grafted normal to the wall to permit intercalation. On the
other hand, a filament polymerizing freely parallel to the

wall is not able to exert force. In general, �opt is an increas-
ing function of the load force and the persistence length. For
the parameters listed in Fig. 20, this angle ranges from �opt
�60° at 0.1 pN to �opt�75° at 2.9 pN. If the persistence
length is lowered to lp�1 �m, the optimal angle is consid-
erably decreased; compare Fig. 21�a�.

For completeness, we have also included a plot for the
protrusion velocity generated using the factorization approxi-
mation for all angles. We find qualitatively the same behav-
ior as for the full expression but significant quantitative dif-
ferences �see Fig. 21�b��.

VI. SUMMARY AND CONCLUSIONS

In summary, we have presented analytical calculations
and extensive Monte Carlo simulations for the entropic force
f exerted by a grafted polymer on a rigid obstacle �wall�. The
scale for the magnitude of the entropic force is given by the
Euler buckling force fc�kBT�p /L2. The stiffness parameter
�=L /�p discerns the two universal regimes of a Gaussian
chain ���1� and a semiflexible chain ���1�. In this paper,
we have mainly focused on the stiff limit, where analytical
calculations using a weakly bending rod approximation are
possible. In comparing our results with Monte Carlo simula-
tions, we have found that the range of applicability of the
results obtained in the stiff limit extend to stiffness param-
eters as large as �=0.1. Qualitatively the asymptotic results
remain valid even up to �=1.

For the simplest possible geometry, where the polymer is
perpendicular to the wall, located at a distance � from the
grafted end, our analytical calculations show that the en-
tropic force obeys a scaling law in the stiff limit

f 
��,L,�p� = fc f̃ 
��̃� �101�

with the scaling variable �̃= �L−�� /L
 measuring the mini-
mal compression of the filament in units of the longitudinal
width of the tip distribution function L
 =L2 /�p, and fc the
Euler buckling force of a classical beam. For small values of
the scaling variable we have derived a simple analytical ex-
pression, �45�,

FIG. 19. �Color online� An actin network polymerizing in the
presence of an external load. � is the network orientation, kon is the
monomers attachment rate, and koff is the monomers detachment
rate. The membrane—for simplicity—has been idealized as a rigid
smooth wall.

FIG. 20. �Color online� Growth velocity v versus graft angle �
�in degrees� for different load forces f =0.1 pN, . . . ,2.9 pN with
steps 0.2 pN obtained using full expressions. Parameters are L
=30 nm, lp=15 �m, konM =110 s−1, and koff=1 s−1.
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f̃ 

���̃� =

4

�5/2

exp�− 1/4�̃�

�̃3/2�1 − 2 erfc�1/2��̃��
�102�

and a corresponding formula in 2D, �58�, which describe the
full scaling function to a high numerical accuracy for �̃
�0.2. For �̃�0.2, there are equally simple expressions, as
for example �46� for 3D. We expect these formulas to be
useful for molecular models of cell motility. The shape of the
scaling function shows dramatic differences between 2D and
3D, which are of geometric origin. In 3D the entropic forces
always stay below the Euler buckling force. In contrast, in
2D it is larger than the mechanical limit for most of the
parameter space and exhibits a pronounced maximum at
small values of the scaling variable �̃ before it steeply drops
to zero as �→L.

Extensive Monte Carlo simulations confirm these analyti-
cal results and show that their range of applicability is �
�0.1. For larger values of the stiffness parameter, there are
clear deviations from the stiff scaling limit, which become
qualitative for ��1. Features of the stiff limit, such as the
maximum in the entropic force, are visible even for � as
large as 4.

Experimentally, one should be able to measure entropic
forces in 2D and compare it to 3D. For example, 2D force
measurements may be feasible by confining the filament to
fluctuate between two parallel plates. Since in some impor-
tant biological systems like the leading edge of a crawling
cell, the system is effectively 2D, these kind of experiments
might also help to understand better a complex system like a
lamellipodium.

For a polymer inclined at an angle � with respect to the
wall, the transverse width L�=�L3 /3�p of the tip distribution
function plays also a significant role; note that the ratio
L
 /L�=�3�. The entropic force can now be written in the
scaling form

f��,�;L,�p� = fc��� f̃��
,��� , �103�

where ��= �L cos �−�� / �L� sin ��, �
 = �L cos �−�� /
��L
 cos �� and fc���= fc / cos �. It turned out that a proper
choice of scaling variables are �=�
 /��= �L� /L
�tan � and
�
 or �� depending on whether the inclination angle is
smaller or larger than a characteristic angle tan �c=L
 /L�,
i.e., �c=1. Upon increasing the inclination parameter �, the
shape of the scaling function changes from a step-function-
like form at �=0 to a purely convex shape as �→
. The
limit �→
 either corresponds to �→� /2 or for a fixed �
�0 to the stiff limit �→0. For 2D, in addition, the maxi-
mum vanishes at ��0.6.

In the limit of inclination angles which are much larger
than the characteristic angle �c, we have found that an ap-
proximation, �96� and �97�, based on factorizing the joint
probability distribution of the polymer tip gives an excellent
asymptotic representation of the full analytical results:

f��,�� =
kBT

L� sin �
� 2

�

e−��
2 /2

erfc���/�2�
. �104�

It is simpler than the full scaling form since it only depends
on one scaling variable. Up to minor factors this asymptotic
formula for the entropic force is mathematically identical to
the results found in Ref. �7�, which was derived upon assum-
ing that the tip of the polymer fluctuates perpendicular to its
contour only. Since tan �c��� the range of applicability of
this results grows with increasing stiffness parameter. For
example, �c equals approximately 30° and 10° for stiffness
parameter � equal to 0.1 and 0.006, respectively. For �
��c the factorization approximation fails completely, since
it gives an incorrect description of the longitudinal stored
length fluctuations. Then, a full analysis in terms of a two
parameter scaling function is necessary.

We have finally shown that filaments in a polymerizing
network grow fastest in a preferred direction �opt, such that
one should expect that the population of those filaments
growing near the optimal angle will be dominant. If the op-
timal angle �opt is larger that the critical angle �c, which is
the case for an actin network with lp�15 �m, then one can
to a large degree use the results from the factorization ap-
proximation.

FIG. 21. �Color online� Protrusion velocity v versus inclination
angle � �in degrees� for different load forces f
=0.1 pN, . . . ,2.9 pN with steps 0.2 pN obtained using �a� full ex-
pressions and �b� factorization approximation. Parameters are the
same as in Ref. �7�: L=30 nm, lp=1 �m, konM =110 s−1, and koff

=1 s−1.
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APPENDIX A: INVERSE LAPLACE TRANSFORM
OF THE MOMENT GENERATING FUNCTION

In this Appendix, we collect our calculations of the in-
verse Laplace transform of the moment generating functions.
This will give two sets of series representations, which show
good convergence properties either close to full stretching or
for strong compression of the filament.

1. Series representation of the 3D tip distribution function
for large stored length

Starting from the moment generating function P
�f�, one
can calculate the distribution function P
�z� by an inverse
Laplace, i.e., an integral along the imaginary axis,

P
�z� = �
−i


+i
 df

2�i
ef�L−z�P
�f� . �A1�

Since the moment generating function

P
�f� = �
k=1


 �1 +
4fL2

�p�2k − 1�2�2�−1

�A2�

has poles at fk=−�k
2�p /L2 with k=1,2 ,3 , . . . only along the

negative real axis, standard residuum calculus gives

P
�f� = �
k=1




exp�− �L − z��k
2 �p

L2�
��

l�k
�1 −

�2k − 1�2

�2l − 1�2 �−1� L2

�p�k
2�−1

. �A3�

Using �k=1

 �1− x2

�2k−1�2�=cos��
2 x� �21�, the product term can

be written as

�
l�k

�1 −
�2k − 1�2

�2l − 1�2 �−1

= lim
k�→k

�1 −
�2k� − 1�2

�2k − 1�2 ��
l
�1 −

�2k� − 1�2

�2l − 1�2 �−1

= lim
k�→k

�1 −
�2k� − 1�2

�2k − 1�2 �cos−1��

2
�2k� − 1��

= 2
�− 1�k+1

�

2

2k − 1
= 2�− 1�k+1 1

�k
. �A4�

Hence we find

P
�z� = 2L

−1�

k=1




�− 1�k+1�k exp�− �k
2�L − z�/L
� �A5�

with the characteristic longitudinal length scale L
 =L2 /�p.

2. Series representation for the tip distribution function
close to full stretching: general d

We begin the analysis with the two-dimensional case,
where

P
�f� = �
k=1


 �1 +
fL


�k
2 �−1/2

=� 1

cosh �fL


. �A6�

For the derivation of our first series representation, we start
from the product formula for the moment generating func-
tion. In this representation, one has branch cuts on the nega-

tive real axis at f̃ = fL
 =−�k
2 for k�N. We now deform the

contour in the complex plane such that we enclose the nega-
tive real axis. Then

P̃
��̃� = �
−i


+i
 df̃

2�i
ef̃ �̃P̃
� f̃�

= �
−


0 df̃

2�i
ef̃ �̃P̃
� f̃ − i�� + �

0

−
 df̃

2�i
ef̃ �̃P̃
� f̃ + i��

= �
0


 df̃

2�i
e− f̃ �̃�P̃
�− f̃ − i�� − P̃
�− f̃ + i��� , �A7�

where �→0. To proceed, we need to evaluate the product
formula on the negative real axis. We find for x� �2k
+1,2k+3� �

2 ,

lim
�→0

�
l=1


 �1 −
x2 � i�

�l
2 = ��i�k 1

�
cos x

. �A8�

Upon substituting y2= f̃ , this finally results in the series ex-
pansion

P̃
��̃� =
2

�
�
n=0




�− 1�n�
�2n+1

�2n+2

dy
ye−y2�̃

�
cos y

. �A9�

For large values of �̃, corresponding to a significant com-
pression of the polymer, the integral is dominated by the
contribution from the interval �� /2 ,3� /2�, such that the
leading factor will be proportional to exp�−�2�̃ /4�. In order

to evaluate P̃
��̃� further, we may average ye−y2�̃ over the
interval and approximate the integral as

�
�2n+1

�2n+2

dy
ye−y2�̃

�
cos y

�

1

5 �
m=4

8

�2n+�m/4� exp�− �2n+�m/4�
2 �̃�

��
�/2

3�/2 dy
�
cos y


�A10�

such that we finally get

P̃
��̃� �
1

N�
n=0




�− 1�n�
m=4

8

�2n+�m/4� exp�− �2n+�m/4�
2 �̃� ,

�A11�

where
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N−1 =
2

5�
�

�/2

3�/2 dy
�
cos y


� 0.67. �A12�

Next we drive a series representation suitable for small
values of �̃. We use that for f �R+ one has �22�

P
�f� =
1

�cosh �fL


. �A13�

With cosh�x�= 1
2 �ex+e−x� and the generalized binomial theo-

rem, this can be expanded to give

P
�f� = �2�
l=0


 �− 1
2

l
�e−�2l+1/2��fL
 , �A14�

which is a holomorphic function on C \R−. Hence by the
theorem of identity from complex calculus this formula re-
mains valid ∀f �C \R−. Substituting y=�fL
 transforms �A1�
to

P̃
��̃� = �
−i
+�

i
+� dy

�i
ey2�̃yP̃
�y2� . �A15�

Inserting the series representation �A14� and using the inte-
gral representation

D1�z� = �2�ez2/4�
−i
+�

i
+� ds

2�i
s exp�− zs +

s2

2
� �A16�

for the parabolic cylinder function �21� as well as

�− 1
2

l
� = �− 1�l �2l − 1�!!

2ll!
, �A17�

where n!!=n�n−2��n−4�¯ yields

P̃
��̃� =
1

���̃
�
l=0




�− 1�l �2l − 1�!!
2ll!

� exp�−
�l + 1

4�2

2�̃
�D1�2l + 1

2

�2�̃
� . �A18�

With D1�x�=xe−x2/4 �A18� becomes �50�.
Finally, all the calculations are easily generalized to gen-

eral spatial dimensions d. One finds the series representation

P̃
��̃� = 2d/2 1
�2�

�
l=0


 �− 1
2 �d − 1�

l
� l + 1

4 �d − 1�
�̃3/2

�exp�−
�l + d−1

4 �2

�̃
� �A19�

which is the fast converging for small �̃.

APPENDIX B: SADDLE POINT APPROXIMATION

Starting from �A1� and introducing f̃ = fL
 gives

P
�z� = �
−i


+i
 df

2�i
efL
�̃ cosh−1 �fL
 = L


−1�
−i


+i
 df̃

2�i

2ef̃ �̃

e
� f̃ + e−� f̃

.

�B1�

We are interested to the asymptotic result of the integral

close to full stretching �̃→0. Upon substituting f̃ =� / �̃2 one
finds

P
�z� =
2

�̃2L

�

−i


+i


d�
exp�f���/�̃�

1 + exp�− 2��/�̃�
, �B2�

where f���=�−��. Since the function f��� has a global maxi-
mum at �0=0.25, the main contribution to the integral in the
limit 1 / �̃→
 comes from the integration along the curve of
steepest descent which passes through �0. We need to find
this curve such that Im�f����=constant=Im�f��0��=0. We
write ��=�a�1+is� in terms of the curve parameter s. Then
the condition Im�f��0��=0 gives a=1/4, and the curve of
steepest descent is given in terms of Re���= 1

4 �1−s2� and
Im���=2as, which is a parabola parametrized by s. The
saddle point approximation amounts to a contour integral
along this parabola, where f���=−�1+s2� /4, such that

P
�z� =
1

L
�̃
2�

−



 ds

2�
�1 + is�

e−�1+s2�/4�̃

1 + e−�1+is�/�̃ . �B3�

To the leading order in �̃ we get

P
�z� =
exp�− 1/4�̃�

�̃2L

�

−


+
 ds

2�
exp�− s2

4�̃
�

=
1

���̃3L


exp�−
1

4�̃
� . �B4�

In the two-dimensional case �2D�, using the same strategy

and substituting f̃ =� / �̃4/3 gives

P
�z� =
1

�8��̃3L


exp�−
1

16�̃
� . �B5�

APPENDIX C: JACOBI TRANSFORMATION
OF THE RESTRICTED PARTITION SUM Z¸„�…

To unclutter the formulas in this section, we use the ge-
neric argument x with x	�
. Z
�x� can be written as

Z̃
�x� = 2�
0




dy �
k=−





�− 1�k+1��y − �k�
1

y
e−�py2x

= 2�
0




dy�̃�y�
1

y
e−�py2x �C1�

where we defined

�̃�y� ª �
k=−





�− 1�k+1���k − y� . �C2�

Since �̃�y� is odd in y and has periodicity 2�, we can expand
it into a Fourier sine series,
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�̃�y� = �
l=1




dl sin�ly� , �C3�

where

dl =
2

�
�

0

�

dy�̃�y�sin�ly� =
2

�
sin�l�/2�

=
2

�
�0 if l is even,

�− 1��l−1�/2 if l is odd.
� �C4�

This results in

�̃�y� =
2

�
�
l=1




�− 1�l+1 sin��2l − 1�y� . �C5�

Inserting this into �C1� we find for Z
�x�,

Z̃
�x� =
4

�
�
l=1




�− 1�l+1�
0




dyy−1e−y2x sin��2l − 1�y� .

�C6�

The integral evaluates to �21� �with �=0, �=x, �=2l−1�

�
0




dyy−1e−y2x sin��2l − 1�y�

=
�2l − 1�e−�2l − 1�2/4x

2�x
��1F1�1;

3

2
;
�2l − 1�2

4x
� . �C7�

As the confluent hypergeometric function 1F1�� ;� ;z�
	��� ,� ;z� has the property ��� ;� ;z�=ez���−� ,� ;−z�
�21� we find with Ref. �21�

��1,
3

2
;z� = ez��1

2
,
3

2
;− z� =

��ez

2�z
erf �z . �C8�

Our result for Z
�x� is thus

Z̃
�x� = 2�
l=1




�− 1�l+1 erf
2l − 1

2�x
. �C9�

This still has problems for x→0 where erf��2l−1� /2�x�
→1. We can, however rewrite it to

Z̃
�x� = 2�
l=1




�− 1�l+1 + 2�
l=1




�− 1�l erfc
2l − 1

2�x
. �C10�

All convergence problems are now isolated in the first sum.
As we know that Z
�0�=1 �compare �36�� we assign
2�l=1


 �−1�l+1=1 to finally find

Z̃
�x� = 1 + 2�
l=1




�− 1�l erfc
2l − 1

2�x
. �C11�

APPENDIX D: GRAFT-ANGLE-DEPENDENT FORCE

We evaluate the general expression �60� using the
representation


�x� = lim
�→0+

� dq

2�i

eiqx

q − i�
�D1�

of the step function 
�x�. With �73� we find

Z��,�� =� dq

2�i

exp�iq
�/cos � − L

L

�

q − i�

�� dx̃d�̃eiq�̃e−iq�L�/L
�tan �x̃P̃�x̃,�̃�

=� dq

2�i

exp�iq
�/cos � − L

L

�

q − i�
ad�− iq�

� exp�− �qL�L

−1 tan ��23b�− iq�/2�

= Z̃�L − �/cos �

L


,
L�

L


tan �� , �D2�

where

Z̃��
,�� = −� dq

2�i

eiq

q + i�
ad�iq�e−3�2q2b�iq�/2. �D3�

Using the Dirac formula

1

q + i�
= P:

1

q
− i���q� , �D4�

a3�0�=1, 3b�0�=1 and the symmetry properties of a3�iq� and
b�iq�, we find

Z̃��
,�� =
1

2
− 2�

0


 dq

2�

1

q
Im�eiq�
a3�iq�e−�1/2��2q23b�iq�� .

�D5�

The notation P denoting the principal value has been
dropped as the integrand is regular at q=0. For large �

and/or �, Z̃��
 ,�� vanishes. This means that the integral in
�85� must approach 1/2. Subtracting the result of numerically
evaluating the nonvanishing integral from 1/2 strongly am-
plifies the unavoidable round-off error. We therefore rewrite
�D5� to

Z̃��
,�� =
1

2
erfc

�


�2�
− 2�

0


 dq

2�

1

q
Im�eiq�


��a3�iq�e−�1/2��2q23b�iq� − e−��2q2�/2�� , �D6�

where we used the identity

1

2
− P:�

−



 dq

2�i

eiq�


q
e−�q2�2�/2 =

1

2
erfc

�


�2�
. �D7�

As Im q2b�iq��−q for large 
q
, it is again advantageous
to split the integrals at some q0 and, for q�q0, to rewrite the
imaginary part appearing in the integrand of �D6� to
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Im�eiq��
+3�2/2��a3�iq�e−�3/2��2�q2b�iq�+iq� − e−��2q2+3iq�2�/2��
�D8�

and the real part appearing in �89� to

Re�eiq��
+3�2/2�a3�iq�e−�3/2��2�q2b�iq�+iq�� . �D9�

In both cases, the integrand is holomorphic for Im q�0.
Hence the integrals vanish if ��
ª�
 +�2 /2�0 which we

already understood in the simple geometric picture of the
problem.

Both integrals now vanish in the limit of large �
 and have
well-behaved integrands on �0,
�. The precision with which
f̃��
 ,�� can be calculated is, however, still limited by the
relative error in evaluating the integrals. This relative error
grows quickly with increasing �
 limiting the range of �


over which f̃��
 ,�� can be calculated reliably �note that the
first term of �D6� vanishes with increasing �
 as well�.
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